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Smart contracts are blockchain programs that automatically enact certain agreements. Due to their immutable nature,
vulnerabilities and bugs in smart contracts can cause significant financial losses and, thus, are often subjected to an auditing
process, possibly supported by the use of formal methods In recent years many program analysis and verification methods and
tools have been developed [1, 2] that use Constrained Horn Clauses (CHCs) [3], formulas in a fragment of first-order logic, as
an intermediate language to represent the verification conditions (VCs) for a system and a property. so that, if the CHCs are
satisfiable then the property under verification is valid. This approach provides great flexibility because efficient solvers, such
as Z3/Spacer1 and Eldarica2, can be used to try to check CHC satisfiability (the problem is undecidable, in the general case).
More recently, several tools for smart contract verification based on CHCs have been developed, such as SmartAce3, Verysmart4,
Securify5, eThor6, HoRStify7 and SolCMC [4], a module integrated in the Ethereum’s Solidity compiler.

During smart contract auditing it is important for verification engineers to be able to inspect the VCs in CHC format.
Unfortunately, these clauses are often difficult to be read by humans. In particular, if we consider the CHCs generated by
SolCMC, we note some critical issues: i) CHCs are in SMT-LIB8 format, a quite verbose format that uses prefix notation, that
further hinders readability; ii) CHCs contain several clauses and predicates, that are generated to distinctly represent scenarios
such as the success and failure (revert) of function calls, the relationship between the input and output of a function (function
summaries), constructor and function initialization; 3) predicates may exhibit mutual dependencies, which may increase the
difficulty of understanding the CHCs. Thus, finding a direct correspondence between the generated CHCs and the original
Solidity source code can be challenging.

Starting from a Solidity smart contract with properties annotated using require() and assert(), via SolCMC we obtain a
set of CHCs in SMT-LIB format, representing the VCs for the considered contract and properties. Then, in order to improve
the readability of CHCs, we first use Eldarica to convert them from SMT-LIB to Prolog format. While still challenging, Prolog
is more human-readable than SMT-LIB. After some textual processing, we use Logtalk9 to generate a Graphviz10 DOT file
representing the Predicate Dependency Graph (PDG), whose nodes correspond to predicates and whose edges represent the
predicates dependencies.

The following example shows a smart contract that implements a simple banking functionality allowing users to deposit
and withdraw funds from their balance, stored in the contract, via the deposit() and withdraw() functions, respectively.
The CHCs that are generated from this simple contract contain a significant number of clauses (about 30), and are not easily
comprehensible.

Solidity contract

contract Bank {

mapping (address => uint) balances;

function deposit() external payable {

uint user_balance = balances[msg.sender];

balances[msg.sender] += msg.value;

uint new_user_balance = balances[msg.sender];

assert(new_user_balance == user_balance + msg.value);

}

function withdraw(uint amount) public {

require(amount > 0 && amount <= balances[msg.sender]);

balances[msg.sender] -= amount;

(bool success,) = msg.sender.call{value: amount}("");

require(success);

}

}

1https://github.com/Z3Prover/z3
2https://github.com/uuverifiers/eldarica
3https://github.com/contract-ace/smartace
4https://github.com/kupl/VeriSmart-public
5https://github.com/eth-sri/securify2
6https://secpriv.wien/ethor/
7https://www.horstify.org/
8https://smtlib.cs.uiowa.edu/
9https://logtalk.org/

10https://graphviz.org
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In the CHC clause extract, select and store are terms encoding read and write operations on the array associated with
the balances map from addresses to address balances. Note also that clauses may contain redundant constraints, unnecessary
variables and multiple occurrences of large constants.

CHC clause extract in Prolog format

...

block_10_function_deposit(A,B,C,D,E,F,G,H,I,J,K) :- \+(L),(A = 1),\+(((L; (M = N)), (\+((M = N)); \+(L)))),(N =<

115792089237316195423570985008687907853269984665640564039457584007913129639935),(N >= 0),(N = (O + P)),(P =<

115792089237316195423570985008687907853269984665640564039457584007913129639935),(P >= 0),(P = msg.value(E)),(O =<

115792089237316195423570985008687907853269984665640564039457584007913129639935),(O >= 0),(O = J),(M =<

115792089237316195423570985008687907853269984665640564039457584007913129639935),(M >= 0),(M = K),(K = Q),(Q >= 0),(Q =<

115792089237316195423570985008687907853269984665640564039457584007913129639935),(Q =<

115792089237316195423570985008687907853269984665640564039457584007913129639935),(Q >= 0),(Q = select(mapping(address =>

uint256)_tuple_accessor_array(I), R)),(R =< 1461501637330902918203684832716283019655932542975),(R >= 0),(R = msg.sender(E)),(

S = I),(T = I),(I = mapping(address => uint256)_tuple(store(mapping(address => uint256)_tuple_accessor_array(U), V, W),

mapping(address => uint256)_tuple_accessor_length(U))),(X =<

115792089237316195423570985008687907853269984665640564039457584007913129639935),(X >= 0),(X = select(mapping(address =>

uint256)_tuple_accessor_array(U), V)),(U = Y),(W =<

115792089237316195423570985008687907853269984665640564039457584007913129639935),(W >= 0),(W = (Z + A1)),(Z >= 0),(Z =<

115792089237316195423570985008687907853269984665640564039457584007913129639935),(Z =<

115792089237316195423570985008687907853269984665640564039457584007913129639935),(Z >= 0),(Z = select(mapping(address =>

uint256)_tuple_accessor_array(Y), V)),(V =< 1461501637330902918203684832716283019655932542975),(V >= 0),(V = msg.sender(E)),(

B1 = Y),(A1 =< 115792089237316195423570985008687907853269984665640564039457584007913129639935),(A1 >= 0),(A1 = msg.value(E))

,(J = C1),(C1 >= 0),(C1 =< 115792089237316195423570985008687907853269984665640564039457584007913129639935),(C1 =<

115792089237316195423570985008687907853269984665640564039457584007913129639935),(C1 >= 0),(C1 = select(mapping(address =>

uint256)_tuple_accessor_array(Y), D1)),(D1 =< 1461501637330902918203684832716283019655932542975),(D1 >= 0),(D1 = msg.sender(E

)),(E1 = Y),(F1 = 0),(G1 = 0),block_8_deposit(H1,B,C,D,E,F,G,H,Y,G1,F1).

...

false :- error_target_4.

Figure 1: PDG for the deposit() function

Figure 1 shows the PDG corresponding to the deposit function of the
example smart contract. Here we can see how the two cases of failure (re-
vert identified by block 10 function deposit) and success (identified by
block 9 return function deposit) of a call to the function are handled.
The summary 4 function deposit predicate is used to keep track of the
relationship between the function’s input and output, derived from all its
possible executions. This is linked to error target 4 which occurs in the
query false :- error target 4 that is used to check the satisfiability of
the CHCs.

Currently, the PDG representation is static and only allows to check
the correspondence between predicate symbols and Solidity code, through
manual review. However, we plan to develop a tool that makes the PDG
visualization dynamic and user-friendly. Such a tool could allow direct
interaction with graph nodes, allowing users to inspect and edit associ-
ated clauses, e.g. by using automated transformation methods, and offer
selective visualisation options for particular sections of the PDG, giving
auditors greater flexibility in their analytical approach and increasing their
confidence in the results of formal verification. Furthermore, preserving
variable names during conversion from SMT-LIB format to Prolog could
help improve the accuracy and usability of the tool.
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