TRAC: a tool for data-aware coordination

(with an application to smart contracts)

Joao Afonso!, Elvis Konjoh Selabi®?, Maurizio Murgia?®,
Anténio Ravaral, and Emilio Tuosto®

1 NOVA School of Science and Technology
2 Universita di Camerino
3 Gran Sasso Science Institute

We propose TRAC, a tool to support the coordination of distributed appli-
cations. The design of TRAC is inspired by the Azure initiative of Microsoft [4]
which advocates the use of finite-state machines (FMSs) to specify the coordina-
tion of smart contract (SC for short). This idea is not formalised; in fact, Azure’s
FSMs are informal sketches aiming to capture the “correct” executions of SCs.
For instance, the FSM for the simple market place (SMP) scenario borrowed
from [5] (the textual description is ours):

S\NFLE Mhrrerrnce S Trawsmons The sketch declares the roles (Owner and Buyer) played by
participants

In the initial state Ttem Available the buyer is allowed to

T MaceOfrer. make an offer, moving the protocol to the Offer Placed

® state where two options are possible: the owner either ac-
cepts the offer (making the protocol reache the success
state Accept) or rejects the offer (moving back the proto-
col to Item Available)
The labels of the transitions specify which role executes
with operations to make the protocol progress

A!’mcmw KOL(S
- Owner (0)
- Bue (8)

Ce

IFTES

The FSM informally specifies a protocol coordinating the participants enacting
the roles owner and buyer, from a global standpoint; we call coordination protocol
such specification. A coordination protocol can be regarded as global view —in the
sense of choreographies [1,3]- where the state of the protocol determines which
operations are enabled. This resembles the execution model of monitors [2]. In
fact, as in monitors, coordination protocols encapsulate a state that —through
an API- concurrent processes can have exclusive access to. The API is basi-
cally a set of operations guarded by conditions set to maintain an invariant
on the encapsulated state (in the SMP scenario the operations are MakeOffer,
AcceptOffer, and Reject). The key differences between coordination protocols
and monitors [2] is that in the former (¢) participants are distributed and do not
share memory, (i¢) the invocation of an operation whose guards is not valid in
the current state is simply ignored without preempting the caller, and therefore
(#4i) processes do not have to be awaken.

We aim to refine the approach of Azure so to enable algorithmic verification
of relevant properties of data-aware coordination of protocols. In fact, as for mon-
itors, the interplay among the operations that modify the state and the guards
in the API can lead to unexpected behaviours when informal specifications are
used. We illustrate this problem with some examples on the SMP example.



2 Authors Suppressed Due to Excessive Length

1. The sketch of SMP does not clarify if a participant can play more roles
simultaneously; for instance, it is not clear if an owner must be a different
instance than buyers.

2. The labels distinguish roles and instances (AR and AIR): in fact, it is assumed
that there can be many instances of a same role. Scope and quantification
of roles is not clear; for instance, a requirement specified in [5] reads “The
transitions between the Item Available and the Offer Placed states can
continue until the owner is satisfied with the offer made.” This sentence does
not clarify if, after a rejection, the new offer can be made by a new buyer or
it must be the original one;

3. The sketch specify neither the conditions enabling operations in a given state
nor how operations change the state of the contract’s variables; should the
price of the item remain unchanged when the owner invokes the Reject?

Contributions This paper proposes DAFSMs, a data-aware coordination model
for orchestrated computation applicable to the description of multiparty proto-
cols. The key novelties are: 1. the support for multiple participants, organised
by roles, which can dynamically join a protocol; 2. the use of assertions to de-
scribe a protocol state and control how (parametrised) actions change it (in
a style akin to Hoare triples); 3. a notion of well-formed models and a check-
ing algorithm; 4. a tool for describing systems with DAFSMs, visualising them
as FSMs, and checking their well-formedness. The applicability of TRAC will
be demonstrated by showing how its features can specify and verify. More-
over, we will discuss the performances of the TRAC with an experimental eval-
uation. The source code of TRAC and our experimental data is available at
https://github.com/loctet/TRAC.

References

1. Object Management Group: Business Process Model and Notation, http://wuw.
bpmn.org

2. Hansen, P.: Operating System Principles. Prentice-Hall (1973)

3. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y.: http://www.w3.
org/TR/2004/WD-ws-cd1-10-20041217, working Draft 17 December 2004

4. Microsoft: The blockchain workbench. https://github.com/Azure-
Samples/blockchain/tree/master /blockchain-workbench (2019)

5. Microsoft: Simple marketplace sample application for azure blockchain work-
bench. https://github.com/Azure-Samples/blockchain/tree/master /blockchain-
workbench/application-and-smart-contract-samples/simple-marketplace (2019)


https://github.com/loctet/TRAC
http://www.bpmn.org
http://www.bpmn.org
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217

	 TRAC: a tool for data-aware coordination 

