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Abstract—The employment of smart contracts to enable the
execution of industrial distributed applications is continuously
growing. Notably, the performance of these applications is tightly
related to the execution performance of the underlying smart
contracts operating on the target blockchain network. This
paper delves into the impact of real-world environment on
smart contract performance, presenting a holistic step-by-step
methodology that allows the user to simulate a production-
grade environment for deploying and benchmarking a smart
contract. The methodology presented in this work has been
applied to an industrially relevant case study, namely a IoT
Structural Health Monitoring application. The results show how
it enables organizations to make informed decisions regarding
smart contract deployment and their scalability, by means of
a quantification of the effects of constraints such as network
limitations and blockchain configuration parameters.

Index Terms—Blockchain, Industrial applications, Smart Con-
tract, Performance evaluation, Benchmark

I. INTRODUCTION

The growing adoption of blockchains across diverse sectors
underscores the critical need for a thorough understanding of
smart contract execution performance under the load condi-
tions provided by real-world industrial scenarios. The signifi-
cance of this kind of scenarios is highlighted when we consider
the growing prevalence of blockchain-based infrastructures in
critical or data-intensive industrial applications.

Smart contract execution performance is influenced by
several interrelated factors: (I) The blockchain internal compo-
nents, such as the consensus protocol. (II) Their client imple-
mentations that impact the execution speed of transactions.
(IIT) The computational capabilities of the infrastructures,
along with resource allocation for hosting blockchain nodes,
directly impacting the efficiency of transaction processing.
(IV) The network infrastructure that interconnects individual
nodes within the blockchain network topology, having latency,
throughput, and reliability properties that contribute to the
overall responsiveness of transaction processing.

Taking into account these interconnected elements is fun-
damental for accurately estimating the execution performance
of smart contracts within a blockchain.

In the context of distributed industrial applications, Average
Transaction Latency (ATL) and Average Transaction Through-
put (ATT) have been selected as primary Key Performance
Indicators (KPIs) among the various metrics that can be
considered when evaluating smart contracts.

In this paper, we introduce a methodology designed to as-
sess the end-to-end performance of smart contracts within in-
dustrial scenarios independently of the underlying blockchain
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technology. Furthermore, we demonstrate the application of
the proposed methodology on a real industrial use case of
Structural Health Monitoring (SHM) [1]. For this, we develop
a tool that automates the deployment of production-grade
Hyperledger Fabric networks and facilitates the automated
benchmarking of smart contracts, accounting for network
conditions, blockchain configuration, and workload.

More specifically, our work makes two main contributions:
(I) Reference Methodology: consisting of four phases, each
with specific objectives, descriptions, and actions. (II) Refer-
ence Implementation: application of the proposed methodol-
ogy to a real case study taken from literature.

II. OUR PROPOSAL

In the context of smart contracts serving industrial appli-
cations, we introduce a four-step approach to evaluate and
estimate the performance of production-grade deployments.

Firstly, the methodology begins with Automated
Blockchain Deployment. It ensures repeatability and ease
of experimentation by using automated procedures to deploy
blockchain nodes. Key considerations include selecting the
blockchain technology and its consensus protocol, configuring
node parameters to mirror production environments, detailing
the network’s composition, and pre-loading the network to
simulate the presence of other smart contracts. This aims to
mimic real-world production-grade deployments closely.

Next, the focus shifts to Emulating Real-World Net-
work Properties. Both permissionless and permissioned
blockchains benefit from geo-distribution: the former because
distributing consensus globally prevents attacks and avoids
censorship or monopoly by any single entity or government
[2]-[4], the latter because a geographically dispersed network
is less susceptible to reliability issues, availability issues or
single points of failure [5]-[8]. Network emulation allows for
the adjustment of latency, jitter, throughput, and packet loss
to replicate real-world conditions, ensuring that the system’s
performance can be accurately assessed, even in scenarios
where the blockchain network does not yet exist.

The third step, Smart Contract Deployment, involves
deploying the smart contract onto the network. This step is
straightforward, requiring a sequence of blockchain-specific
commands. It also includes selecting the type of transaction
to target for benchmarking, with a preference for read-write
transactions due to their higher computational demands.

Finally, the methodology leads to Benchmarking, where
the smart contract’s performance is assessed using two main
key performance indicators (KPIs) that characterize the end-
to-end performance: Average Transactions Latency (ATL) and
Average Transaction Throughput (ATT). This step aims to un-
derstand how well the smart contract can meet the demands of
its intended use case, and the potential room for optimizations.
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Fig. 1: Architecture of the reference implementation.

III. CASE-STUDY

We apply our methodology to a case study focused on a
Structural Health Monitoring (SHM) application for a railway
bridge [!], utilizing a blockchain-powered framework for se-
cure data management via Hyperledger Fabric smart contracts.

Following the steps described in the proposed methodology,
we develop a modular framework for setting up production-
grade Hyperledger Fabric networks. For network emulation,
we utilize the Traffic Control tool to simulate real-world
network conditions such as latency and packet loss, based
on network performance data from leading cloud providers
to reflect realistic network conditions. The deployment process
involves setting up the blockchain components as Docker con-
tainers, then instantiating the smart contract on the network,
preparing for benchmarking. For benchmarking, we make
use of Hyperledger Caliper, an open-source tool supported
by the Linux Foundation, to measure the smart contract’s
performance focusing on average transactions latency and
throughput. This case study not only demonstrates the appli-
cation of our methodology but also provides a blueprint for
future research, offering insights into deploying and evaluating
blockchain-based applications in industrial settings.
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Fig. 2: Results of the first benchmark run in logarithmic scale.

IV. EXPERIMENTAL FINDINGS

Firstly, we evaluated the performance of the industrial
application when subject to different environments, starting
from ideal conditions and up to incorporating all the network
constraints reproducing a real-world network. The results of
this benchmark are depicted in Figure 2.

The real-world network conditions appear to have a negligi-
ble impact on the smart contract throughput with respect to an
ideal deployment. However, we can observe that the resulting
Average Transaction Latency (ATL) may be up to 6% higher
than the ideal conditions.
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Fig. 3: The line plots show the maximum average latency
and throughput that the system under test is able to provide
when using different transaction sizes. The histogram shows
the corresponding maximum number of running concurrent
industrial applications. Logarithmic scale.

Secondly, we evaluated the capabilities of the application
when stress-tested. For this purpose, we leveraged the fixed-
load Caliper configuration, which varies the input TPS dynam-
ically, ensuring that the backlog queue of undone transactions
is always non-empty. The outcomes of this benchmark are
presented in Figure 3. Considering each different transaction
size configuration, we can measure the ATT and therefore we
can compute the maximum number of satisfiable concurrent
application as N = TPSges/TPSapp. We can notice how the
ATT decreases as Transaction Size increases, whereas Average
Latency demonstrates the opposite trend. More specifically,
the Transaction Size can be adjusted to accommodate more
concurrent use cases at the cost of a higher ATL.

For instance, with a chunk length of 864, resulting in a
transaction size of 489 KiB, the average throughput is approx-
imately 23 TPS. This configuration can effectively serve 23
concurrent Structural Health Monitoring (SHM) applications
while maintaining an average latency of less than 1.5 seconds.

V. CONCLUSIONS

This study showcases an innovative methodology for eval-
uating the impact of real-world factors on smart contract
performance in industrial settings, consisting in a four-step
process. Our approach leverages Average Transaction Latency
(ATL) and Average Transaction Throughput (ATT) as key per-
formance indicators for measuring and comparing outcomes
across different blockchain technologies.

Applying this methodology to a Structural Health Monitor-
ing (SHM) case study, we were able to assess its feasibility
under a non-ideal deployment. Moreover, we leverage the ob-
tained insights to identify an optimal configuration that offers
the lowest ATL while satisfying the application’s requirements.

In addition, this performance evaluation allows us to esti-
mate the maximum number of industrial applications that can
be served concurrently by the target smart contract deployment
in real-world conditions. Importantly, we also show how to
tailor the system to serve additional use cases at the expense
of increased latency.
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