
How are Smart Contracts Vulnerabilities Fixed? Bridging
the Gap between Theory and Practice
Francesco Salzano1,∗, Lodovica Marchesi2,∗, Remo Pareschi1, Roberto Tonelli2,
Simone Scalabrino1 and Rocco Oliveto1

1STAKE Lab, University of Molise, Pesche, Italy
2Dep. of Mathematics and Computer Science, University of Cagliari, Italy

Keywords
Smart Contract engineering, Smart Contract vulnerabilities, Smart Contract vulnerability fixing

Smart contracts are self-executing contracts that use
blockchain technology to facilitate, verify, or enforce
the negotiation or performance of a contract [1]. The
Smart Contracts are programmable and can automate
the transfer of digital assets. However, vulnerabilities
in Smart Contracts can lead to significant losses, as was
the case with the DAO attack, where around $60 mil-
lion was fraudulently stolen [2]. Therefore, it is crucial
to prioritize Smart Contract security to minimize such
risks. Various fields have explored Smart Contract secu-
rity aspects, including research that identifies security
defects and suggests potential solutions to fix vulnera-
bilities [3, 4]. Additionally, past research has provided
security vulnerability detection tools based on static anal-
ysis and fuzzing, which have been empirically evaluated
[5, 6]. However, it is still unclear to what extent develop-
ers follow these research outlines and whether there are
other viable solutions available.

The purpose of this study is to examine the changes
made by Solidity developers when fixing Smart Contracts
hosted in GitHub repositories. The main goal is to deter-
mine the extent to which developer-made fixes align with
the guidelines outlined in the literature and to identify
new and practical fixing methods. To begin, we gathered
guidelines for fixing vulnerabilities from various sources
in the literature. We considered a fixing approach that
provided secure code to address a security threat as a
guideline. Next, we searched Solidity GitHub reposito-
ries for commits that patched vulnerabilities and verified

6th Distributed Ledger Technology Workshop, May, 14-15 2024 – Turin,
Italy
∗Corresponding author.
Envelope-Open f.salzano1@studenti.unimol.it (F. Salzano);
lodovica.marchesi@unica.it (L. Marchesi);
remo.pareschi@unimol.it (R. Pareschi); roberto.tonelli@unica.it
(R. Tonelli); simone.scalabrino@unimol.it (S. Scalabrino);
rocco.oliveto@unimol.it (R. Oliveto)
Orcid 0000-0002-1029-4861 (F. Salzano); 0000-0002-0627-5043
(L. Marchesi); 0000-0002-4912-582X (R. Pareschi);
0000-0002-9090-7698 (R. Tonelli); 0000-0003-1764-9685
(S. Scalabrino); 0000-0002-7995-8582 (R. Oliveto)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

if these fixes were already included in the collected recom-
mendations. As a second step, we identified vulnerability
fixes that were not mentioned in the literature. For this
analysis, we carefully evaluated each identified solution
to determine if it was appropriate.

To steer our research project towards our goals, we
have formulated two research questions as follows:

• RQ1: To what extent do developers follow the
fixing guidelines provided by the literature?

• RQ2: Are there valid fixing approaches other
than those found in the literature?

To answer our first research question, we gathered
academic solutions for addressing vulnerabilities. We
then searched for commits that fixed vulnerabilities in
Solidity GitHub repositories that had at least ten stars.
To exclude irrelevant commits, we used an NLP filter that
was tuned to exclude commit messages that were not
related to security fixes. During this phase, we considered
vulnerabilities included in the DASP TOP 10 taxonomy.

Review literature
searching for

fixing approaches

Analyze resultsExtract changes
made by the

commit

Categorize fixes
according to the

DASP

Check if the fix is
in literature

recommendations

Resolve conflicts
and get results

Figure 1: Overall workflow to answer RQ1
After that, we manually evaluated these commits and

excluded those that did not report the fixed vulnerability
and the patched file. We made this choice to limit the
bias introduced by the evaluators and to follow the in-
structions left by the developers of the commit messages.
The remaining commits were analyzed to evaluate the
extent to which the obtained fixes complied with the lit-
erature fixing guidelines. If we found fixes that did not
comply with the guidelines, we conducted experiments
to address our second research question. Figure 1 depicts
the workflow we designed to respond RQ1.

Figure 2: Overall workflow to answer RQ2

mailto:f.salzano1@studenti.unimol.it
mailto:lodovica.marchesi@unica.it
mailto:remo.pareschi@unimol.it
mailto:roberto.tonelli@unica.it
mailto:simone.scalabrino@unimol.it
mailto:rocco.oliveto@unimol.it
https://orcid.org/0000-0002-1029-4861
https://orcid.org/0000-0002-0627-5043
https://orcid.org/0000-0002-4912-582X
https://orcid.org/0000-0002-9090-7698
https://orcid.org/0000-0003-1764-9685
https://orcid.org/0000-0002-7995-8582
https://creativecommons.org/licenses/by/4.0

Figure 3: Denial of service patched by a commit.

Regarding RQ2, we examined the patches that were
applied to address security threats in the set of resulting
commits. The authors evaluated whether these solutions
are included in academic recommendations. If not, they
analyzed them to determine if the patches are valid and
should be considered as usable.

In relation to answering both RQs regarding whether
conflicts among authors arise, the research plan includes
a conflict-resolution phase. This phase consists of a crit-
ical discussion of the instances in conflict between the
analyzers. The flow dedicated to addressing RQ2 is sum-
marized in Figure 2.

We executed the experimental plan we designed to val-
idate our proposal, obtaining promising results. Figure 3
shows an instance, in which developers used a fix that
we do not observe in the reviewed literature. In detail,
the function was vulnerable to denial of service because
the unbounded iteration can consume more gas than the
block gas limit, permanently reverting the transaction.

The change made by the commit limits the upper limit,
and the gas consumption becomes bounded, resolving
the denial of service. Thus, we marked this fix as valid.

To sum up, previous research has provided guidelines
for fixing vulnerabilities. Our study aims to evaluate
whether developers follow these recommendations and
to provide new options for fixing vulnerabilities. The
datasets and results from our study will be made publicly
available to encourage further research, which will help
to expand the possibilities of auto-repair tools and deepen
our understanding of fixing changes.

Acknowledgments
This project was partially funded through TruMaN (Ital-
ian Ministry of University and Research, 2022, PRIN,
Project 2022F5CLN2).

References
[1] W. Zou, D. Lo, P. S. Kochhar, X.-B. D. Le, X. Xia,

Y. Feng, Z. Chen, B. Xu, Smart contract development:
Challenges and opportunities, IEEE Transactions on
Software Engineering 47 (2019) 2084–2106.

[2] M. I. Mehar, C. L. Shier, A. Giambattista, E. Gong,
G. Fletcher, R. Sanayhie, H. M. Kim, M. Laskowski,
Understanding a revolutionary and flawed grand
experiment in blockchain: the dao attack, Journal of
Cases on Information Technology (JCIT) 21 (2019)
19–32.

[3] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, T. Chen,
Defining smart contract defects on ethereum, IEEE
Transactions on Software Engineering 48 (2020)
327–345.

[4] X. Zhou, Y. Chen, H. Guo, X. Chen, Y. Huang, Se-
curity code recommendations for smart contract,
in: 2023 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER),
IEEE, 2023, pp. 190–200.

[5] T. Durieux, J. F. Ferreira, R. Abreu, P. Cruz, Empir-
ical review of automated analysis tools on 47,587
ethereum smart contracts, in: Proceedings of the
ACM/IEEE 42nd International conference on soft-
ware engineering, 2020, pp. 530–541.

[6] J. F. Ferreira, P. Cruz, T. Durieux, R. Abreu, Smart-
bugs: A framework to analyze solidity smart con-
tracts, in: Proceedings of the 35th IEEE/ACM in-
ternational conference on automated software engi-
neering, 2020, pp. 1349–1352.

