
Oral Communication: Detection of De-Fi Profitable
Scenarios through History-Based Policies
Margherita Renieri1, Letterio Galletta1

1IMT School for Advanced Studies Lucca, Italy

Abstract
Smart contracts, deployed and executed within blockchain environments, operate autonomously, eliminating the need for
central authorities. Typically written in Solidity, they interact with other contracts on Ethereum through external calls.
However, external calls provide no mechanism to ensure that the called code satisfies some predefined behavioral policies.
We propose a framework to specify and enforce security policies to address this issue, enhancing smart contract integrity and
security. More precisely, these policies are specified by developers at the contract code level to monitor the execution of a
part of the code while enforcing the desired behavior. We describe how our approach can be used to detect and prevent flash
loan-based arbitrage scenarios.

Keywords
Security policies, Decentralized Finance, Formal methods

1. Talk proposal
Context and motivation Smart contracts are com-
puter programs deployed and executed within a
blockchain environment. On the Ethereum blockchain,
they are commonly written in the Solidity language and
compiled into the EVM bytecode. The definition of a
smart contract in Solidity looks like a class in any OOP
language: contracts have an internal mutable state and a
set of procedures to manipulate it. The public functions
of a contract can be invoked by users directly through
transactions or by other contracts through the external
calls mechanism. Although this external call mechanism
is powerful in enabling interactions between smart con-
tracts, it provides no means to ensure that the invoked
code satisfies some predefined behavioral policies. This
is even more critical when the smart contract address
implementing the function to be invoked is a parameter
of the current function, so the caller controls the code
that will be executed. This could have severe security
consequences as many attacks on smart contracts exploit
external calls to run attacker-controlled code [1].
To address this, we propose a methodology allowing

developers to specify and enforce prior security policies
on internal and external contract calls at the code level,
checking that the called code is complainant with such
policies at run-time. In this way, after developers have
encoded the allowed behavior in the policies, they can be
sure that the called code does not deviate from it. In our

DLT 2024 : 6th Distributed Ledger Technology Workshop, May 14-15,
2024, Torino, TO
Envelope-Open margherita.renieri@imtlucca.it (M. Renieri);
letterio.galletta@imtlucca.it (L. Galletta)
Orcid 0000-0001-6987-1881 (M. Renieri); 0000-0003-0351-9169
(L. Galletta)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

proposal, a policy consists of two parts: the first is a reg-
ular expression that represents the history and describes
the sequence of calls the invoked external call is allowed
to do; the second is an assertion on the state the smart
contract reaches after the call execution. Therefore, an
external call to be compliant with a policy must produce
a history that belongs to the language of the policy’s
regular expression, and a contract state that satisfies its
assertion.

An overview of the framework In the talk, we out-
line the design and the formalization of our approach.
More precisely, we start from TinySol, a core calculus
for smart contracts introduced by Bartoletti et al. [2],
and extend it with a policy framing construct 𝜙[𝑆] for
guarding the execution of statements 𝑆 with a developer-
defined policy 𝜙. We define the syntax of our policies
𝜙 and the operational semantics of a TinySol program
𝑆. Intuitively, a policy 𝜙 is a pair (𝑟𝑒𝜙, 𝐸𝜙), where 𝑟𝑒𝜙 is a
regular expression and 𝐸𝜙 is a boolean expression that
must evaluate to true. Since 𝐸𝜙 may predicate on values
that will be only known at run-time, we allow variables
to occur inside 𝑟𝑒𝜙 that will be bound to concrete values
during the history check. The semantics is a transition
system that describes the result of a computation, namely
the reaching state, and collects its history, namely the se-
quence of function calls performed at run-time together
with their actual parameters. More precisely, configu-
rations consist of triples of the form ⟨𝑆, 𝜎 , 𝜂⟩, where 𝑆 is
the sequence of statements to execute, 𝜎 is the starting
state, and 𝜂 is the history; and of pair ⟨𝜎 ′, 𝜂′⟩ representing
final configurations. Transitions are defined by a set of
inference rules providing the semantics to each construct
of the language. We briefly illustrate how we evaluate
the policy framing 𝜙[𝑆], given a state 𝜎 and a history

mailto:margherita.renieri@imtlucca.it
mailto:letterio.galletta@imtlucca.it
https://orcid.org/0000-0001-6987-1881
https://orcid.org/0000-0003-0351-9169
https://creativecommons.org/licenses/by/4.0


𝜂. First, we run the statements 𝑆 through a transition
⟨𝑆, 𝜎 , 𝜂⟩ → ⟨𝜎 ′, 𝜂′⟩; if the execution of 𝑆 terminates, we
check that the produced history 𝜂′ is compliant with 𝜙.
To check the compliance, we rely on the formalism of
symbolic automata [3]. More precisely, we transform the
regular expression 𝑟𝑒𝜙 (which may have variables) into
a symbolic automata 𝐴𝜙, and check that the history 𝜂′
belongs to the language of 𝐴𝜙 for some assignment 𝜌 of
variables of 𝑟𝑒𝜙. Then, we evaluate the assertion 𝐸𝜙 in
the reached state 𝜎 ′ extended with the assignment 𝜌: If
𝐸𝜙 evaluates to true, the policy 𝜙 is satisfied, and the exe-
cution continues. Otherwise, when the history 𝜂′ does
not belong to the language of 𝐴𝜙 or 𝐸𝜙 evaluates to false,
the execution is aborted because of a policy violation.

An Illustrative Scenario We now show how our pol-
icy framework can detect flash loan-based arbitrage be-
havior. Flash loans allow any user to obtain loans without
up-front collateral. Such loans are valid only within a
single transaction and rely on the atomicity of blockchain
transactions, specifically within a single block. If a user
is unable to repay the loan, the flash loan transaction au-
tomatically fails and reverts, rendering the entire mech-
anism risk-free for the loaning contract. This is made
possible by the EVM’s capability to revert state changes.
Moreover, they enable users to capitalize on several fi-
nancial opportunities, one of which is arbitrage. Let us
briefly introduce what an arbitrage is. The value of a to-
ken is determined by market demand and supply across
various Decentralized Exchanges (DEXs).1 Due to the
lack of instantaneous synchronization amongDEXs, iden-
tical tokens may be traded at slightly different prices on
different exchanges. Arbitrage involves exploiting these
price differences among exchanges for financial gain. A
user executes a series of token swaps to capitalize on the
difference in exchange rates, ultimately generating prof-
its from the price discrepancy between the two tokens.
Through flash loans, a user can perform arbitrage on dif-
ferent on-chain markets without an upfront amount of
tokens and without the risk that the prices in the DEX
would immediately change since the arbitrage occurs
in a single transaction. This behavior has been linked
to various real-world arbitrage exploits, such as those
discussed in [4].
Below, we consider a flash-loan implementation sim-

ilar to the one of Aave protocol [5]. To perform a flash
loan, we require a user first to deploy on the blockchain
her smart contract, call it Flash, following a given in-
terface (it has to implement the executeOperation()
function), and then to call the function flashLoan of
the protocol, call it Pool, passing the address of the
smart contract Flash and the amount of tokens to be

1DEXs are smart contracts that create a liquidity pool of ERC20
tokens, which are automatically traded by an algorithm.

loaned. After some sanity checks, the flashLoan func-
tion transfers the requested amounts to the user’s con-
tract and calls its executeOperation() function. Since
the executeOperation() is completely controlled by the
user, she can perform any financial operations she desires,
provided that the loan amount plus some fees are paid
back to the protocol when executeOperation() termi-
nates its execution. For example, in a flash-loan-based
arbitrage, a user may exploit the price discrepancies be-
tween tokens t_a and t_b on two different Automated
Market Makers, AMM1 and AMM2, to achieve a profit. Let be
User, Pool, Flash, AMM1, and AMM2 the addresses of five
contracts that interact with each other. A flash loan-based
arbitrage may involve the execution of the following se-
quence of function calls while executing flashLoan:

1. Pool.balance()
2. Pool.transfer(Flash, z : t_a)
3. Flash.executeOperation()
4. AMM1.swap(User, t_a, t_b, x)
5. AMM2.swap(User, t_b, t_a, y)
6. Flash.payback(Pool)

First, the Pool contract performs some sanity checks,
during these checks, it invokes the Pool.balance()
function. Then, the requested amounts of tokens
are transferred to the contract Flash via a call
to Pool.transfer(Flash, z : t_a). This trans-
fer of tokens is followed by the invocation of
executeOperation() on the Flash contract. Once the
Flash contract has available the flash-loaned amount,
it executes various swaps to manage the borrowed as-
sets. It perform a first swap (denoted as x) on one
asset (t_a) to acquire another asset (t_b) on an AMM1
contract (AMM1.swap(User, t_a, t_b, x)), followed
by the reverse swap (denoted as y) on a different AMM2
contract (AMM2.swap(User, t_b, t_a, y)). Once the
Flash contract completes these operations, it repays its
debt to the Pool contract, including additional fees via
the call to Flash.payback(Pool) function.
Our policy mechanism can prevent the execution of

arbitrage by monitoring the function calls performed
inside the executeOperation() and checking the profit
performed by the user. The idea is to define a policy
𝜙 = (𝑟𝑒𝜙, 𝐸𝜙) as follows: the 𝑟𝑒𝜙 checks the sequence
of function invocations to catch all the executions that
involve two consecutive swap; the assertion 𝐸𝜙 checks
that the price discrepancies are not too high. Protecting
the invocation of executeOperation() with a policy
framing 𝜙[executeOperation()] enables us to identify and
potentially mitigate profitable unwanted scenarios on
the blockchain. More precisely, the policy would validate
the execution of swap actions involving sets of tokens
of opposing types across different AMMs (steps 5 and 6),
i.e., 𝜙 would verify if the utilized AMMs (permitting the
trading of identical tokens) have a relevant token ratio.



References
[1] OWASP, Reentrancy attack, https://owasp.org/

www-project-smart-contract-top-10/2023/en/src/
SC01-reentrancy-attacks.html, 2024.

[2] M. Bartoletti, L. Galletta, M. Murgia, A minimal core
calculus for solidity contracts, in: Data Privacy Man-
agement, Cryptocurrencies and Blockchain Technol-
ogy: ESORICS 2019 International Workshops, DPM
2019 and CBT 2019, Luxembourg, September 26–27,
2019, Proceedings 14, Springer, 2019, pp. 233–243.

[3] S. Drews, L. D’Antoni, Learning symbolic automata,
in: International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems,
Springer, 2017, pp. 173–189.

[4] K. Qin, L. Zhou, B. Livshits, A. Gervais, Attacking the
defi ecosystem with flash loans for fun and profit, in:
International conference on financial cryptography
and data security, Springer, 2021, pp. 3–32.

[5] A. D. V3, Flash loans, 2023. URL: https://docs.aave.
com/developers/guides/flash-loans, accessed: March
08, 2024.

https://owasp.org/www-project-smart-contract-top-10/2023/en/src/SC01-reentrancy-attacks.html
https://owasp.org/www-project-smart-contract-top-10/2023/en/src/SC01-reentrancy-attacks.html
https://owasp.org/www-project-smart-contract-top-10/2023/en/src/SC01-reentrancy-attacks.html
https://docs.aave.com/developers/guides/flash-loans
https://docs.aave.com/developers/guides/flash-loans

	1 Talk proposal

