
A Formal Framework for security assessment
of Ethereum Smart Contracts⋆

Chiara Braghin1[0000−0002−9756−4675], Elvinia Riccobene1[0000−0002−1400−1026], and Simone
Valentini1[0009−0005−5956−3945]

Computer Science Department,
Università degli Studi di Milano, via Celoria 18, Milan, Italy

{chiara.braghin, elvinia.riccobene, simone.valentini}@unimi.it

Context and Motivations. Blockchain has shown to be a versatile technology with applications
ranging from financial services and supply chain management to healthcare, identity verification,
and beyond. Thanks to the usage of smart contracts, blockchain can streamline and automate
complex processes, eliminating the need for intermediaries and reducing administrative overhead.

As blockchain-based smart contracts gain mainstream adoption, the demand for reliable and
secure smart contract design and development becomes increasingly vital. Smart contracts are
programs that govern high-value financial assets, but they carry a substantial risk due to their
public availability, immutability, and the ability for anyone to execute them. For example, the
infamous DAO hack drained $70 million worth of Ether from a vulnerable smart contract that
was not properly verified [2]. Costly vulnerabilities and exploits can seriously hinder trust and
acceptance in the blockchain ecosystem. Smart contracts often handle valuable assets and execute
critical functions, making them attractive targets for attackers. Design-time error detection would
allow developers to catch and rectify issues before the smart contract is deployed on the blockchain,
enhancing the overall security, reliability, and trustworthiness of smart contracts.

Formal verification may contribute to the overall maturity and spread of blockchain technology
by providing a robust methodology for security assessment of smart contracts. The field of formal
verification for smart contracts has made notable progress but still faces challenges.

State of the Art. Several approaches and tools have been developed to formally verify smart con-
tracts, particularly those written in languages like Solidity. However, existing tools have several
limitations: bytecode-based tools cannot reason about contracts at design time, some tools use
complex notations requiring a strong mathematical base that discourages many designers or engi-
neers, and others target only a limited number of vulnerabilities [8, 9]. Therefore, challenges and
research areas still require further development and improvement. For example, the languages and
tools used for formal verification may not fully capture the specific features and behaviors of smart
contracts. In addition, while formal verification tools can prove simple properties and catch com-
mon vulnerabilities, proving complex properties or verifying more sophisticated aspects of a smart
contract’s behavior remains challenging. Scalability is also a relevant issue: formal verification can
be computationally expensive and time-consuming, especially for complex smart contracts or large
codebases. In addition, smart contracts often interact with external systems, such as oracles and
other smart contracts. Formal verification tools often struggle to model and verify the behavior of
such external dependencies.

Among the most relevant approaches, Certora [1] is a formal verification tool specifically de-
signed for Ethereum smart contracts. It supports the verification of correctness properties and
functional specifications. Other relevant works are remarkable for their usage of symbolic execu-
tion, like Oyente [7], which performs a symbolic execution analysis on Ethereum smart contracts.
Tools like VerX [10] and Securify [11] leverage abstract interpretation and dependency graphs to
analyze smart contracts and verify the correctness of different properties expressed in temporal
logic.

Research contribution. Our work aims to explore the potential of using the Abstract State Ma-
chine (ASM) formal method [4, 5] and its supporting toolset ASMETA 1 for the specification and

⋆ This work was partially supported by project SERICS (PE00000014) under the MUR National Recovery
and Resilience Plan funded by the European Union - NextGenerationEU .

1 https://asmeta.github.io/

2 Chiara Braghin, Elvinia Riccobene, and Simone Valentini

verification of Ethereum smart contracts written in Solidity. Our long-term vision is to build a
practical verification framework for security assessment of smart contracts.

To this aim, in [6] we formalized the Ethereum Virtual Machine (EVM) and key language
primitives to enable functional correctness proofs. We developed libraries within the ASMETA
framework that allows specifying Solidity contracts in ASMs, simulating their behavior, and for-
mally verifying key properties. As demonstrated through examples 2, this enables detecting at
design-time various vulnerabilities, such as access control issues, or reentrancy attacks. The AS-
META toolset allows different forms of model analysis. In particular, model verification is possible
by verifying properties expressed in temporal logic: the model checking AsmetaSMV maps ASM
models to the model checker NuSMV: the tool will check if the property holds during all possible
model executions.

Given the heterogeneous nature of the possible types of vulnerabilities (e.g., unchecked external
codes, gas limit and out-of gas issues, timestamp dependencies reentrancy attacks, unintended ex-
posure of sensitive data, or errors in the flow logic), we are currently working to verify intra-contract
properties, i.e., logical errors inside the given smart contract that represent possible vulnerabilities,
and to model inter-contract interactions to check the robustness of a contract against some given
attacks. Specifically, starting from the taxonomy of vulnerabilities causes in [3], we are building a
catalog of:

– patterns of properties to guarantee the operational correctness of the contract and its adherence
to certain predefined properties (i.e., intra-contract properties);

– models of malicious contracts to check the robustness of a contract against those vulnerabilities
that allow malicious contracts to manipulate the behavior of the vulnerable contract (i.e., due
to unsafe inter-contract interaction).

The long-term vision is to build an integrated environment that supports correct-by-design
smart contract development, by providing automatic mappings between Solidity and ASMs, a GUI
for ASMmodeling, and seamless access to the verification back-end. There are also opportunities for
extending this approach to other blockchain platforms beyond Ethereum. Overall, formal methods
like ASMs can potentially increase the reliability and security of smart contracts, which is essential
for their widespread adoption across domains.

References

1. Certora Technology White Paper. https://docs.certora.com/en/latest/docs/whitepaper/index.html,
Accessed: 2024-02-20

2. Alchemy, N.: A short history of Smart Sontract hacks on Ethereum: A.k.a. why you need a smart
contract security audit (2019)

3. Atzei, N., Bartoletti, M., Cimoli, T.: A Survey of Attacks on Ethereum Smart Contracts SoK. In:
Proceedings of the 6th International Conference on Principles of Security and Trust - Volume 10204.
p. 164–186. Springer-Verlag (2017)

4. Börger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer (2018).
https://doi.org/10.1007/978-3-662-56641-1

5. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and Analysis.
Springer Verlag (2003)

6. Braghin Chiara, Riccobene Elvinia, V.S.: State-based modeling and verification of smart contracts.
Accepted to 39th ACM/SIGAPP Symposium on Applied Computing (2024)

7. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts smarter. In: Proceedings
of the 2016 ACM SIGSAC conference on Computer and Communications Security. pp. 254–269 (2016)

8. Madl, G., Bathen, L., Flores, G., Jadav, D.: Formal Verification of Smart Contracts Using Interface
Automata. In: IEEE Int. Conf. on Blockchain. pp. 556–563 (2019)

9. Mavridou, A., Laszka, A.: Designing Secure Ethereum Smart Contracts: A Finite State Machine Based
Approach. In: Financial Cryptography and Data Security. pp. 523–540 (2018)

10. Permenev, A., Dimitrov, D., Tsankov, P., Drachsler-Cohen, D., Vechev, M.: Verx: Safety verification
of smart contracts. In: 2020 IEEE Symposium on Security and Privacy (SP). pp. 1661–1677 (2020)

11. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Bünzli, F., Vechev, M.: Securify: Practical se-
curity analysis of smart contracts. In: Proc. of Conference on Computer and Communications Security
(CCS’18). p. 67–82 (2018)

2 https://github.com/smart-contract-verification/ethereum-via-asm

