
A Data Extraction Methodology for Ethereum Smart

Contracts
(Oral Communication)

Flavio Corradini1, Alessandro Marcelletti1,
Andrea Morichetta1, and Barbara Re1

University of Camerino, Camerino, Italy
{flavio.corradini, alessand.marcelletti, andrea.morichetta, barbara.re}@unicam.it

The Ethereum blockchain is gathering interest thanks to its key features, including secu-
rity, transparency, and decentralisation. In such a context, the extraction of data generated by
the execution of blockchain-based applications is useful to support their continuous improve-
ment. Indeed, thanks to smart contracts, decentralised applications are executed directly in the
blockchain, generating data that can be used for certified auditing and monitoring activities
[1, 2, 3]. Among the different analysis techniques, process mining is an emerging solution for
analysing blockchain applications exploiting data (i.e., logs) resulting from smart contract ex-
ecutions [5]. Process mining is a set of techniques that can be used to identify bottlenecks and
deviations from the expected behaviour of the monitored processes [7]. In particular, the pro-
cess mining community is moving toward object-centric event data representing the backbone
of managing and analysing complex process data [8]. The blockchain context can benefit from
such an analysis but still lacks a suitable extraction methodology to process the complexity
of data generated by blockchain-based applications. Considering blockchain applications, the
execution of a smart contract generates data that is stored in blocks (e.g., timestamp), trans-
actions (e.g., sender, inputs, gas, and more), events and storage (i.e., the memory containing
the smart contract state). Additional effort is also required to decode information that cannot
be easily interpreted in its original form in the blockchain. Thus, the extraction activity has
to deal with the heterogeneity of storage and decoding factors. Moreover, catching the state
changes of a contract permits a comprehensive understanding of the application and enables
detailed analysis of the contract evolution over time. Differently from transaction and block, a
state change does not generate a clear and accessible track, requiring a deep investigation of the
low-level data structure [4, 9]. In Ethereum, each variable influencing the state of a smart con-
tract is permanently stored and encoded in the storage memory based on a specific slot. In the
case of simple variables, this slot is statically assigned, while for complex types (e.g., mappings
and structs), this is dynamically combined with a key generated during the execution. In the
last few years, some approaches were proposed to extract data stored in different blockchain
sources [6]. However, these approaches mainly extract information related to the execution of
smart contract functions (e.g., events, inputs, senders) without considering the evolution of its
state.

For these reasons, we propose a data extraction methodology to extract data from
Ethereum smart contracts including execution-related data and state changes. The
proposed methodology is divided into some steps described in the following. The first step
retrieves the contract code starting from the contract address and the contract name from
which to extract data. Then, all contract transactions from which data is extracted are collected.
Once the smart contract source code is obtained, we compile the contract to obtain three
particular outputs: (i) Application Binary Interface (ABI), (ii) Abstract Syntax Tree (AST),
and (iii) storage layout. This information is used to decode extracted data. The extraction of
contract state data is the focal point of the proposed methodology, and it extracts the state



A Data Extraction Methodology for Ethereum Smart Contracts F. Corradini, et al.

variables updated after each contract execution. For this purpose, each transaction is replicated
on a local environment with the state of the blockchain at the moment in which the transaction
was originally executed. This returns the transaction trace containing the list of executed
operations (i.e., opcodes) and the state of the EVM (i.e., memory locations). By analysing such
operations and their inputs/outputs, it is possible to reconstruct the history of state variable
changes and retrieve their location in the case of dynamic ones. As a result, the step produces
the storage state that is later included in the final log. Once the contract state changes are
collected and decoded, the methodology extracts transactions and blocks data. For each
of them, the methodology takes the name of the executed function from the corresponding log
and its inputs, decoded thanks to ABI. Similarly, the methodology extracts events emitted
by smart contract functions and contained in the transaction log. Using the ABI, events of
past transactions are captured together with the name and the value of the attributes. The
last step of the methodology creates the JSON log containing all the extracted data. This
log is stored and provided to the user, who can use it for different analysis scopes.

To demonstrate the feasibility of the proposed solution, the methodology was implemented
as a web application that makes the data extraction of a smart contract accessible by taking the
contract details from the user as input. Also, we tested the benefits of our methodology using
the PancakeSwap Ethereum smart contract, but it can be generally applied to any Ethereum
smart contract.

References

[1] Claudio Di Ciccio, Giovanni Meroni, and Pierluigi Plebani. Business process monitoring on
blockchains: Potentials and challenges. In Enterprise, Business-Process and Information Systems
Modeling, volume 387 of LNBIP, pages 36–51. Springer, 2020.

[2] Claudio Di Ciccio, Giovanni Meroni, and Pierluigi Plebani. On the adoption of blockchain for
business process monitoring. Softw. Syst. Model., 21(3):915–937, 2022.

[3] Flavio Corradini, Alessandro Marcelletti, Andrea Morichetta, Andrea Polini, Barbara Re,
and Francesco Tiezzi. Engineering trustable and auditable choreography-based systems using
blockchain. ACM Trans. Manag. Inf. Syst., 13(3):31:1–31:53, 2022.

[4] Kiarash Diba, Kimon Batoulis, Matthias Weidlich, and Mathias Weske. Extraction, correlation,
and abstraction of event data for process mining. WIREs Data Mining Knowl. Discov., 10(3), 2020.

[5] Leyla Moctar-M’Baba, Mohamed Sellami, Walid Gaaloul, and Mohamedade Farouk Nanne.
Blockchain logging for process mining: a systematic review. In HICSS, pages 1–10. ScholarSpace,
2022.

[6] Leyla Moctar-M’Baba, Mohamed Sellami, Walid Gaaloul, and Mohamedade Farouk Nanne.
Blockchain logging for process mining: a systematic review. In HICSS, pages 1–10. ScholarSpace,
2022.

[7] Wil M. P. van der Aalst. Process mining: A 360 degree overview. In Wil M. P. van der Aalst and
Josep Carmona, editors, Process Mining Handbook, volume 448 of LNBIP, pages 3–34. Springer,
2022.

[8] Wil M. P. van der Aalst. Object-centric process mining: Unraveling the fabric of real processes.
Mathematics, 11(12):2691, 2023.

[9] Jochen De Weerdt and Moe Thandar Wynn. Foundations of process event data. In Wil M. P.
van der Aalst and Josep Carmona, editors, Process Mining Handbook, volume 448 of LNBIP, pages
193–211. Springer, 2022.

2


	References

