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Abstract
Achieving fair, accountable, transparent, and ethical decentralized finance requires activating enabling
properties at the level of smart contracts, the executable scripts at its basis. In this vision paper, a joint
effort of the Central Bank of Italy, TU Wien, and the University of Oxford, we leverage the vast amount
of experience in this sense from the database community and propose a logic-based reasoning framework
that captures smart contracts as a set of rules in DatalogMTL, a temporal language for querying databases.
We show how the theoretical underpinnings of the reasoning of DatalogMTL convey important properties
to the approach and show it in action on industrial cases of relevance to a central bank
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1. Introduction

The Artificial Intelligence and database communities are experiencing a growing infusion
of the FATE (Fairness, Accountability, Transparency, Ethics) [1]. These principles are gaining
prominence, drawing attention to the non-functional requirements of everyday AI-assisted and
data-driven decision-making and catalyzing the discussion around regulatory bodies. Unfor-
tunately, the same level of attention to these high-level concerns is not mirrored in developer
circles, and recent studies underscore the scant regard machine learning developers have shown
for FATE concerns in machine learning applications [2, 3].

FATE and DeFi. We see similar patterns emerging when assessing developers’ awareness
of FATE concerns within the industrial realm of Decentralized Finance (DeFi). DeFi entails
financial transactions devoid of intermediaries, instead relying on software modules executed
on a decentralized public ledger [4]. At the core of DeFI is the notion of smart contracts [5],
which are machine-readable and executable agreements that establish and enforce the binding
terms for the parties involved.

Supporting FATE. In the AI and data world, social forces have been effective in supporting
FATE, for example, by means of third-party audits of the algorithms, either conducted by experts
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or by everyday users. As recently highlighted by Hong in CACM [1], prominent examples can
be found in the fights against the racial bias of face-recognition systems [6], and commercial
gender disparities in photo cropping or credit card algorithms [7]. These audits, spurred by
social forces and the scientific community, have provided regulators with positive guidance.

In contrast to AI, DeFi boasts a substantial theoretical transparency advantage, thanks to its
open-access code and the ability for anyone to inspect smart contract data on a public ledger.
However, enforcing policies in a decentralized context remains an incredibly challenging task.
The praiseworthy goal of establishing standards, taxonomies, compliance measures, quality
controls, and upholding ethical principles [8] can benefit from robust support from the social
forces in the monitoring and enforcement of such policies. However, this must align with the
specific technical attributes of these smart contracts. Yet, smart contracts have been criticised
within the community due to their overly complex business logic, and limited explainability,
resulting in a lack of transparency. Furthermore, they often prove challenging to describe and
communicate, rendering them less user-friendly, particularly for non-technical users [9, 10, 11].

A Knowledge Representation and Reasoning (KRR) approach to smart contracts. In
the area of deductive AI and ontological reasoning on databases, logic-based approaches built
on top of KRR formalisms are gaining increasing attention in industrial settings, with many
successful financial applications [12, 13, 14]. Modern logical languages manage to strike a good
balance between expressive power and computational complexity, resulting in compact and
efficiently executable formalizations of complex domains, for instance, being able to capture
SPARQL under OWL 2 entailment regimes [15] and so enabling ontological reasoning. The
declarative paradigm sustains simplicity, transparency, compactness, and understandability of
code, which becomes algorithm-independent and closer to the high-level specifications, policies,
and standards. The well-defined semantics of KRR languages fosters non-ambiguity, ease of use
for non-technical users, and correctness. The intrinsic step-by-step nature of logical reasoning is
conceptually close to notions of explainability and thus supports decision transparency.

The thesis of this vision paper is that a KRR framework for smart contracts that addresses FATE
by design is both theoretically and practically viable. For the theory, we show that, by building on
the underpinnings of logic-based reasoning, the features important to achieving FATE desiderata
can be obtained and rigorously justified. In terms of application, we show that our framework is
adaptable to serve as both an interpreted and a compiled execution mode for real-world contracts.
Contributions to industrial advances. In recent industrial EDBT work done by the Central
Bank of Italy [16], they started to investigate the possibility of encoding complex smart contracts
in DatalogMTL [17, 18], a temporal extension of the Datalog language [19] of databases. They
obtained promising results, which highlighted the potential of a KRR approach in the specific
case of a derivative contract. In this work, a joint effort of the Central Bank of Italy, TU
Wien, and the University of Oxford, we aim to go substantially further by: (i) proposing a
full-fledged and general framework for smart contracts that sustains FATE concerns;
(ii) leveraging the vast amount of experience from the database community to achieve
enabling properties; (iii) using our framework to study and implement proof of concepts
for many smart contracts where FATE is a core desideratum of a central bank, namely,
tokenisation, peer-to-peer transactions, decentralized financial markets, and smart legal contracts.



2. Overview of the framework and related work

We use a form of declarative logical object-oriented approach and encode the behaviour of a
class of smart contracts as a set Σ of reasoning rules—or programs—working on a database 𝐷 of
temporal facts. A temporal fact of 𝐷 is such that it holds in a given time interval, for example,
price(123, 2)@[2023-09-01,2023-09-02] defines the price 2 for the asset 123 in a two-day interval.

To model the rules of Σ, we introduce DatalogMTL𝑆, a variant of DatalogMTL with features
of practical utility. A smart contract is then an instance of a smart contract class, whose time-
dependent status is represented as a database 𝐷 of temporal facts. Instances are stateful objects
and the contract execution consists in invocations, akin to method calls, that are carried out by
the involved parties. Calls result in updates to the status 𝐷 through the addition of new facts.
The semantics of a call is operationally described as the application of the rules of Σ (denoted as
Σ(𝐷)) to the temporal facts of 𝐷, extended with call-specific facts.

DatalogMTL𝑆 rules are sets of head←body logic implications where the body is a conjunction
of atoms and the head is an atom. As a general guideline, whenever the body of a rule is satisfied
by a conjunction of facts in 𝐷 at a point in time 𝑡, the evaluation of the rule triggers the insertion
in 𝐷 of a new fact for the head atom, holding at 𝑡. For example, the rule ‘position(𝑥, 𝑤) ←
buy(𝑥, 𝑎, 𝑞), price(𝑎, 𝑝), 𝑤 = 𝑝 ∗ 𝑞’ states that, for every point in time 𝑡, the position 𝑤 of a
trader 𝑥 that buys an amount 𝑞 of an asset 𝑎 of price 𝑝 is obtained as 𝑝 ∗ 𝑞. So if 𝐷 contains
the price fact price(123, 2) and buy(0𝑥241𝐹 , 123, 12), both holding at [2023-09-01,2023-09-02], a
new position(0x241F, 24) holding in the same time interval will be added to 𝐷.

In DatalogMTL𝑆, temporal operators can be used to either modify the temporal binding of
body atoms to facts of 𝐷, or to alter the temporal validity of the generated facts. For instance,
an expression of the form ♦−[0,1d]position(𝑥, 𝑤) in the body holds at a point in time 𝑡, if the
trader 𝑥 had at least an open position 𝑤 in the interval [𝑡 − 1, 𝑡], while an expression of the form
⊞[0,1d]position(𝑥, 𝑤) in the head, states that the position will be open in the interval [𝑡, 𝑡 + 1]
for every 𝑡. In the following, we show a smart contract class defining a simple financial market:

𝑅1∶ accepted($sender, 𝑦) ← #open(𝑦), ¬marketClosed .
𝑅2∶ ⊞−position(𝑥, 𝑦 , 𝑘) ← accepted(𝑥, 𝑦), price(𝑝), 𝑘 = 𝑦 ∗ 𝑝.
𝑅3∶ return(x , g), ⊞−position(𝑥, 𝑦 , 0) ← #close(), price(𝑝), position($sender, 𝑦 , 𝑘), 𝑔 = 𝑦 ∗ 𝑝 − 𝑘.

At a specific point in time in which the market is not closed, a trader tries to open a position by
investing an amount 𝑦 (Rule 𝑅1). The constant $𝑠𝑒𝑛𝑑𝑒𝑟 is a call-level variable that at runtime
binds to the invoking trader. When the transaction is accepted (Rule 𝑅2), the position of the
trader 𝑥 on the amount 𝑦 is updated by multiplying by the current price 𝑝. The ⊞− operator
stands for a new future temporal validity of the position fact. Finally, when the position is
closed (Rule 𝑅3), the final profit 𝑔 is computed based on the current price.

Execution modes. From a practical perspective, our framework implements Σ(𝐷) by enabling
three execution alternatives, each offering specific properties, as reported in Figure 1: (i) on-
reasoner execution: the rules are applied natively by a reasoning system supporting DatalogMTL
or DatalogMTL𝑆 such as Temporal Vadalog [20] or MeTeoR [21]; (ii) on-chain execution: the
DatalogMTL𝑆 programs are verifiably translated into the language of a target system, for
instance, Solidity [22] or Bitcoin Script [23] and executed within the target systems; (iii) off-
chain execution, the rules are applied with an on-reasoner execution with persistent effects on a



blockchain and cryptographically verifiable computation.

Figure 1: Overview of the DatalogMTL𝑆 framework.

The expert intention is sub-
stantiated as a natural language
(NL) contract or directly en-
coded in a DatalogMTL𝑆 pro-
gram Σ, and the use of large lan-
guage models (LLM) can bridge
the gap between the natural
language specification of the
contract and the encoding of its
DatalogMTL𝑆 version [24].

In the on-reasoner execution
mode, to evaluate Σ, reasoners
use variants of the chase pro-
cedure [25] specialized for the
temporal extensions [26]. They offer full explainability of the produced facts as a side effect of
the inference process of the chase. Also, they are suited to be used for simulation and runtime
verification purposes (see Section 5) as step-by-step debugging can be emulated by incrementally
adding facts to 𝐷 and monitoring the results entailed by the application of Σ. On the other hand,
the execution relies on a trusted centralized system.

Conversely, on-chain execution offers a trustless paradigm, only requiring that the user
acknowledges the translation of the DatalogMTL𝑆 code into the target language, which can be
verified through open-sourced translators (see Section 4). This trustlessness is underpinned
by the validation properties ensured by the distributed consensus protocol embraced by the
blockchain, guaranteeing the integrity of the mined blocks. What is more, on-chain execution
is characterized by its timeliness, as results are promptly included in the first mined block.

However, on-chain execution comes with a high cost and is ill-suited for complex applications.
In contrast, off-chain execution is widely regarded as a practical and efficient alternative,
and there is a large body of related work such as state-channels [27], Plasma [28], and Zero-
Knowledge Rollups [29]. In particular, specific protocols have been proposed, that help attest
the integrity of off-chain computation (i.e., verifiable computation), such as ZK-SNARK [30]
and ZK-STARK [31]. Towards this direction, the construction of specialized virtual machines
compiling succinct ZK proofs for DatalogMTL𝑆 executions is envisaged here, but beyond the
scope of this vision paper and a matter of future work.

Quality. Investigating and assessing the properties of a smart contract stands as a paramount
concern for regulators, financial institutions, and central banks. Beyond chase-based explain-
ability, our framework establishes a twofold path for the scrutiny and validation of smart
contracts: during static compile-time and dynamically at runtime. For compile-time checks,
as contracts are specified in logic, dedicated tools can be developed as future work, that apply
formal methods for logical verification, with good decidability expectations in the presence
of bounded input sources [32]. In contrast, acquiring dynamic checks in our framework is a
relatively straightforward process, involving the real-time querying of the system to examine
outcomes dependent on Σ and 𝐷. We believe that these dynamic checks hold significant promise



for easy integration by the aforementioned stakeholders into their monitoring and compliance
tools. From a technical standpoint, we represent dynamic checks as temporal conjunctive queries.

For example, a possible validation for our smart contract in the financial market example
above involves inquiring whether, in the past year, a user has repeatedly accumulated losses as a
result of closing positions. This may indicate a deficiency in the associated process checks and so
a compliance problem. We employ a combination of the ⊟ operator from DatalogMTL𝑆, which
signifies the persistent continuity of its argument in the past, and the ♦− operator, indicating the
occurrence of a fact within a specified past interval, as we have seen:

𝑄 ← ⊟[0,1y]♦−[0,1m](#close, return(𝑥, 𝑔), 𝑔 < 0).

Termination andComplexity. Fact entailment in DatalogMTL is a decidable task, in particular
PSPACE in data complexity [17]; therefore we have guaranteed termination and guaranteed
computational complexity. Moreover, the rules modelling real-world smart contracts need to
allow for the derivation of facts into present and future time points, while the propagation
towards the past is almost never required. Under this condition, the set Σ belongs to the forward-
propagating fragment, namely, DatalogMTLFP [33], for which a finite representation of infinite
models is always possible [18]. It is important to point out that in DatalogMTL the use of
arithmetic and recursion can, in general, lead to undecidability [34] and a comprehensive study
of arithmetic in DatalogMTL has not been provided yet. However, our framework conditions
the activations of the rules on the specific smart contract functions being called, which reduces
the cases of potentially harmful recursion.

3. Industrial use cases

We now give a set of smart contracts of industrial relevance to see our framework in action.
ERC-20. The ERC-20 [35] is a well-known and widely adopted Token Standard that imple-
ments an API for tokens within smart contracts. The following DatalogMTL𝑆 smart contract
implements a simple ERC-20 contract with a fixed supply 𝑆.

𝑅1∶ ⊞totalSupply(𝑆), ⊞−balanceOf ($sender, 𝑆) ← #init(𝑆).
𝑅2∶ ⊞−balanceOf ($sender, 0) ← ¬balanceOf ($sender, 𝑋 ), #create().
𝑅3∶ ⊞−balanceOf ($sender, 𝐵𝑠 − 𝐴),

⊞−balanceOf (to, 𝐵𝑟 + 𝐴) ← balanceOf ($sender, 𝐵𝑠), balanceOf (to, 𝐵𝑟),
𝐵𝑠 ≥ 𝐴, #transfer(to, 𝐴).

Rule 𝑅1 initializes the smart contract state by adding the facts ⊞totalSupply(𝑆) and
⊞−balanceOf ($sender, 𝑆). Note that using the ⊞− operator allows to overwrite the balance in case
of a transfer. Rule 𝑅2 allows the sender to initialize a balance, if not already done earlier. Rule
𝑅3 implements the “transfer” function from the sender address $sender to the recipient address
to of amount 𝐴. Atoms of the form balanceOf (address, 𝑋 ) in the body are used to query the
balance 𝑋 of address (a common pattern in logic programming), the condition 𝐵𝑠 ≥ 𝐴 imposes
that there is enough balance from the sender account to complete the transfer, and the head of
the rule uses the ⊞− to update the balances accordingly. We omitted transferFrom and approve.
Legal Recourse. A legal recourse against a contract refers to the options available to parties
when a contract is breached or when there is a dispute regarding the terms or performance of
the contract. When a contract is executed via a smart contract, blockchain immutability poses a



significant challenge when altering or amending the contract effects once its terms have been
carried out. The use of declarative languages, which enhances transparency, helps mitigate this
issue by minimizing the ambiguity inherent in natural language, thereby reducing the likelihood
of legal disputes [36]. However, unforeseen events such as force majeure, varying jurisdictional
interpretations, and contract bugs may necessitate adjustments to the contract outcome, even
after the transaction has been finalized. Moreover, it is important to distinguish between
enabling legal recourse in a contract and appointing an arbiter, as an actor in the contract itself,
who makes decisions regarding the transaction outcome in cases where the involved parties fail
to reach an agreement. Legal recourse is typically considered a post-transaction event, which
may also involve the arbiter and occurs after the transaction has been completed.

𝑅1∶ ⊞partA(addr𝐴), ⊞partB(addr𝐵),
⊞arbiter(addra), ⊞contractId(id𝑐) ← #init(addr𝐴, addr𝐵, addra, id𝑐)

𝑅2∶ #Contract(𝑥)[addr𝐴, addr𝐵] ← contractId(𝑥), partA(addr𝐴), partB(addr𝐵).
𝑅3∶ balanceFlowRec(𝑥1−𝑥2, 𝑦1−𝑦2, 𝑧1−𝑧2) ← ♦−[1,1]balance(𝑥1, 𝐴), balance(𝑥2, 𝐴),♦−[1,1]balance(𝑦1, 𝐵), balance(𝑦2, 𝐵),

♦−[1,1]balance(𝑧1, 𝐶), balance(𝑧2, 𝐶), partA(𝐴), partB(𝐵), contractId(𝐶).
𝑅4∶ #Contract(𝑥).undoAndRefund(𝐴) ← partA(𝐴), arbiter(𝑥, $sender), contractId(𝑥), #legalOutcomeA().
𝑅5∶ #Contract(𝑥).undoAndRefund(𝐵) ← partB(𝐵), arbiter(𝑥, $sender), contractId(𝑥), #legalOutcomeB().
𝑅6∶ #Contract(𝑥).undoAndCancel(𝐴, 𝐵) ← partA(𝐴), partB(𝐵), arbiter($sender), contractId(𝑥), #legalOutcomeCancel().

Rule 𝑅1 initializes the contract; Rule 𝑅2 initializes the insured contract; Rule 𝑅3 manages the
balances of the parties involved; Rule 𝑅4 (resp. 𝑅5) handles the case when the recourse resolves
in favour of party 𝐴 (resp. 𝐵); and Rule 𝑅6 undoes the effects of the insured contract. The
trigger atoms #Contract(𝑥).undoAndRefund allow to interact with the ensured contract.

4. Compilation in Solidity

While a complete and detailed design of a compilation technique of DatalogMTL𝑆 contracts to
Solidity smart contracts is out of this paper’s scope, in this section, we give the intuition of a
comprehensive approach for the translation and exemplify by showing meaningful patterns.
Types and Variables. Predicates occurring in a DatalogMTL𝑆 program belong to either a status
schema 𝒮, a transient schema 𝒯, or a function schema ℱ. Generated atoms whose predicates are
in 𝒮, since they persist across chase computations (i.e., VM function calls) in the status database
𝐷, are mapped into contract state variables and data structures; transient atoms are mapped in
local function data, and function or trigger atoms are used to generate Solidity functions. If the
predicate is unary, the atom is mapped to a variable, while predicates for two or more arguments
are mapped in Solidity structs. There might be user-defined exceptions, e.g., balanceOf can be
compiled into a map. Furthermore, each position of a predicate must be mapped to a Solidity
type (e.g., the argument of supply and other amounts to type ‘uint256’, account addresses, such
as the argument in buyer and seller above, are mapped to the type ‘address’). The compilation
process must analyze the program and check whether the provided type mapping is consistent.
The occurrence of special call variables (e.g., $sender and $this.balance) are translated into msg
attributes (msg.sender and this.balance, respectively).
Functions. The rules with the #init trigger atom are converted into constructors, and each
variable in the argument list is converted into a constructor argument, typed according to
the specified type mapping. Similarly, the other trigger rules (i.e., with a trigger predicate in



1 contract SimpleERC20Contract {
2 uint256 immutable t o t a l S u pp l y ;
3 mapping ( address => uint256 ) public ba lanceOf ;
4
5 constructor ( uint256 _S ) {
6 t o t a l S u pp l y = _S ;
7 ba lanceOf [msg . sender ] = _S ;
8 }
9

10 function c r e a t e ( ) public {
11 i f ( ba lanceOf [msg . sender ] ! = 0 ) { revert ( ) ; }

12 ba lanceOf [msg . sender ] = 0 ;
13 }
14
15 function t rans fe r ( address _to , uint256 _A ) public {
16 uint256 Bs = ba lanceOf [msg . sender ] ;
17 uint256 Br = ba lanceOf [ to ] ;
18 i f ( ! ( Bs >= _A ) ) { revert ( ) ; }
19 ba lanceOf [msg . sender ] = Bs − _A ;
20 ba lanceOf [ _to ] = Br + A ;
21 }
22 }

Figure 2: The Solidity code generated from the ERC-20 DatalogMTL𝑆 program example.

the body) are converted into functions; if there is more than one rule with the same trigger
predicate in the body, we use function overloading to distinguish the different behaviours in
the Solidity code. Generated head atoms of the form ⊞𝑃(t) are translated into the initialization
of immutable variables, while ⊞− are translated into variable updates. Predicates that occur in
temporal operators with an arbitrary time interval, such as⊞[𝑡1,𝑡2]𝑃(t),⊟[𝑡1,𝑡2]𝑃(t) and♦−[𝑡1,𝑡2]𝑃(t),
correspond to variables that must be read via internal getter functions, which return the right
value depending on the timestamp of the current function call. Depending on the time intervals
for a specific predicate, a data structure that indexes its values appropriately, e.g., by intervals
in which certain values hold, might be needed. For example, if the only temporal operator that
appears in front of a predicate is ♦−[0,1], we only need to remember the value of the associated
variable in the previous time step.
Control flow. Advanced queries (e.g., nested temporal operators, joins, etc.) on the current
contract state database might require advanced program synthesis techniques to generate gas-
efficient on-chain computation. Other expressions in the body of a rule (such as comparisons,
equality check conditions, negated atoms, atoms with free variables) correspond to control flow
constructs in Solidity (i.e., if-then-else clauses, error handling). The parsing of the DatalogMTL𝑆

must consider the program’s derivation paths starting from each trigger rule.
Figure 2 shows the output of the compilation process over the example DatalogMTL𝑆 program

for the ERC-20 token. The predicates are partitioned as follows: 𝒮 = {totalSupply , balanceOf },
𝒯 = {} andℱ = {#init , #create, #transfer}. The argument of the totalSupply predicate is mapped
to the uint256 type, and balanceOf is mapped to a mapping from address to uint256, where
the first argument of the predicate is the key of the mapping. The constructor function is
generated from 𝑅1, while create and transfer are generated from 𝑅2 and 𝑅3, respectively.
Note that the definition of the create function is necessary for the DatalogMTL𝑆 semantics but
pleonastic in Solidity since the values of mapping are initialized to default values of their type;
in particular, uint256 defaults to 0. The condition on the available balance in the transfer
function is negated and, in case the condition is satisfied, the transaction is reverted.

5. Formal Verification

In this section, we argue that our framework can enable formal verification of smart contracts
written in DatalogMTL𝑆. According to the taxonomy proposed by Tolmach et al. [37], our
contract modeling approach can be ascribed to the contract-level category, which is concerned



with the high-level behavior of a smart contract under analysis andwithout considering technical
details of its implementation and execution. In our framework, the correctness of the smart
contract’s on-chain behaviour and execution on the target platform primarily follows on the
correctness of the compilation step and on the correctness of the DatalogMTL𝑆 program.

An example of how formal properties can be verified is by additional program rules that
formalize invariants in the DatalogMTL𝑆 language. These are formalized using rules of the
form ⊥ ← 𝐴1, … , 𝐴𝑚, meaning that, if all expressions 𝐴1, … , 𝐴𝑚 are true (that is, the invariant
does not hold), then the function call that triggered that rule must be reverted. These rules
are compiled into assert instructions and can be seen as a runtime validation technique that
rejects all transactions that violate the invariants, as in [38]. For example, In the ERC-20 smart
contract, we might add some invariant conditions that must be true at any time during the
lifetime of the smart contract, such as:

•The sum of user balances is equal to totalSupply [39] (the operator msum is an aggregation
operator that computes the sum, see [40, 26])

actualTotalSupply(msum(⟨(𝐵)⟩) ← balanceOf (_, 𝐵).
⊥ ← actualTotalSupply(𝑁1), totalSupply(𝑁2), 𝑁1! = 𝑁2.

•The sums of sender and receiver balances before and after the transfer are equal [41]:

⊥ ←♦−[0,1]#transfer(), address(𝑡𝑜),♦−[0,1]balanceOf ($sender, 𝐵𝑠),♦−[0,1]balanceOf (𝑡𝑜, 𝐵𝑟),
balanceOf ($sender, 𝐵′𝑠 ), balanceOf ($sender, 𝐵′𝑟 ), 𝐵𝑠 + 𝐵𝑟 = 𝐵′𝑠 + 𝐵′𝑟 .

More sophisticated formal verification approaches could be developed specifically for Data-
logMTL programs. For example, we could extend the approach for program verification based
on using Constrained Horn Clauses (CHCs) [42, 43], already used by the Solidity Compiler’s Model
Checker (SolCMC) [44], to support also temporal operators.

6. Conclusion

This preliminary work proposes a framework for expressing and evaluating smart contracts,
focusing on improving the explainability and transparency of traditional smart contract devel-
opment. We achieve this by building on decades of research in KRR, particularly in declarative
logic-based programming, leveraging the expressive power of DatalogMTL. Inspired by a re-
cent application of such formalism for modelling smart contracts [45, 16], we generalize those
approaches and develop a foundational framework which supports the formalization and evalu-
ation of arbitrary smart contracts. While in this paper we focused more on the vision and its
industrial applications in the financial sector, we can already foresee many research avenues as
future works. First, we aim to develop novel techniques (e.g., zero-knowledge techniques for
off-chain execution) and implementations for realizing each execution mode. Next, it would be
interesting to investigate the impact of developing smart contracts in DatalogMTL𝑆, in terms
of ease of use, explainability, and code quality. Finally, we want to devise and apply formal
verification techniques for DatalogMTL𝑆 smart contracts.
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