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Abstract
Automated Market Makers are one of the most used Decentralized Finance services. They allow users
to exchange crypto-assets without a third party. Current protocols have strong constraints related to
the liquidity level that users’ balances must satisfy for each transaction. In this paper, we propose a
liquidity-saving mechanism that aims at reducing the required amount of liquidity in an AMM service.
We provide an operational semantics of such a mechanism that precisely characterizes the interactions
between users and AMMs and the conditions when the liquidity-saving mechanism is triggered. Our
mechanism collects the proposed transactions in a finite queue, providing a global perspective of all
users’ actions. Starting from the queue, it finds a feasible transaction sequence that satisfies the users’
balances. Finally, it performs these transactions on the blockchain atomically, reaching a state where all
liquidity constraints are met. By doing so, the mechanism allows for novel liquidity saving behavior for
multi-party exchange and multi-AMM arbitrage with less upfront liquidity as usually required.
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1. Introduction

In Decentralized Finance (DeFi) systems, Automated Market Makers (AMMs) are decentralized
exchanges (DEXs) that provide users with liquidity using different reserves, enabling them
to trade different crypto-assets, i.e., tokens. Users participating in these token exchanges pay
fixed trading and gas fees charged by the Ethereum network. Similarly to traditional financial
systems, users need to provide an upfront amount of crypto-assets as collateral to operate
with such decentralized financial services. Liquidity is essential for AMMs to work properly,
otherwise, it is possible to incur scenarios that hinder their economic performance and limit
user involvement.
AMMs rely on users who act as liquidity providers by depositing a certain amount of tokens

into AMM smart contracts that can be used for trades. AMM protocols implement liquidity-
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saving mechanisms (LSM) that aim at reducing liquidity costs by minimizing the required
liquidity for transaction settlement. DeFi protocols have introduced various approaches to
achieve this goal, e.g., flash loans [1, 2] and flash swaps [3]. These mechanisms allow users
to temporarily loan tokens with no collateral but require them to pay back their debt within
a single transaction. One of their limitations is that they do not easily permit scenarios with
more users involved or trades requiring more than one transaction to be completed.

In this paper, we propose the design of an LSM for AMMs that offers the advantages of flash
loans and flash swaps but overcomes their limitations. In particular, our mechanism permits
users to operate on the AMM without upfront balance by aggregating multiple actions over a
specific time frame. Our aggregation mechanism is inspired by netting [4, 5, 6], an LSM used
in traditional finance: netting creates payment instruction queues among banks, offsets the
value of multiple payments, and finds the most convenient payment combination to eliminate
stunting periods. We provide here a formalization of our mechanism in terms of a labelled
transition system (LTS) that precisely characterizes the interactions between users and AMMs
and the conditions when the netting mechanism is triggered.

Intuitively, our mechanism works as follows. First, we equip AMMs with a finite queue to
store trading transactions (swaps) proposed by users. When a user performs a transaction that
would result in a balance overdraft, the transaction is stored in the queue. Otherwise, if the
transaction has the effect of setting all balances of users having pending transactions in the
queue to positive, the transaction queue is executed atomically, resulting in a liquidity-saving
sequence of swaps. If the queue reaches its maximum capacity where some users’ balances
are still negative, a netting algorithm selects a subset of the stored transactions that meet the
liquidity constraints for each user, if any, and atomically performs them. In such a way, users
capitalize on market inefficiencies, facilitating the trading of assets more efficiently and cost-
effectively. We discuss the scenarios where our proposed netting-based AMM and traditional
AMM differ in the performed swap transactions. In particular, we show examples of multi-party
trading operations that are not executed in standard AMMs due to lack of liquidity but are
settled by ours.

In summary, our main contributions are:

• We provide an LSM that settles AMM trades through a netting algorithm and allows
us to implement liquidity-optimized AMM. We illustrate examples that allow users to
perform multi-party exchanges and multi-AMM arbitrage without the upfront liquidity
that would be required in traditional AMMs.

• We formalize our mechanism by adopting the operational semantics of the interactions
between users and AMMs proposed by Bartoletti et al. [7]. We adapt their semantics by
removing the liquidity constraints on users’ balances when performing swap actions and
by appending swap transactions in a queue until a liquidity-balanced state is reached.

• We provide a lightweight netting algorithm that can run on the blockchain as part of a
smart contract to select a subset of swaps that can actually be performed without violating
any liquidity constraints.

In the rest of the paper we proceed as follows. We provide a high-level overview of our
approach in Section 2. Section 3 presents the operational semantics of our LSM mechanism,



User A

[0 ∶ 𝜏0, 0 ∶ 𝜏1, 4 ∶ 𝜏2]

AMM1

{12 ∶ 𝜏0, 12 ∶ 𝜏1}

AMM2

{12 ∶ 𝜏1, 12 ∶ 𝜏2}

User B

[4 ∶ 𝜏0, 0 ∶ 𝜏1, 0 ∶ 𝜏2]

𝑠1 = A∶ swap(6 ∶ 𝜏1, 4 ∶ 𝜏0)
A[4 ∶ 𝜏0, −6 ∶ 𝜏1, 4 ∶ 𝜏2]|𝐴𝑀𝑀1{8 ∶ 𝜏0, 18 ∶ 𝜏1}

𝑠2 = B∶ swap(6 ∶ 𝜏1, 4 ∶ 𝜏2)
B[4 ∶ 𝜏0, −6 ∶ 𝜏1, 4 ∶ 𝜏2]|𝐴𝑀𝑀2{18 ∶ 𝜏1, 8 ∶ 𝜏2}

𝑠3 = A∶ swap(4 ∶ 𝜏2, 6 ∶ 𝜏1)
A[4 ∶ 𝜏0, 0 ∶ 𝜏1, 0 ∶ 𝜏2]|𝐴𝑀𝑀2{12 ∶ 𝜏1, 12 ∶ 𝜏2}

𝑠4 = B∶ swap(4 ∶ 𝜏0, 6 ∶ 𝜏1)
B[0 ∶ 𝜏0, 0 ∶ 𝜏1, 4 ∶ 𝜏2]|𝐴𝑀𝑀1{12 ∶ 𝜏0, 12 ∶ 𝜏1}

Figure 1: Interaction between two Users and two AMMs.

together with relevant scenarios comparing it with standard AMMs. Section 4 discusses related
literature, and Section 5 concludes and discusses some future work.

2. Overview of the approach

In current DeFi protocols, such as Uniswap [3], a user interacts with the AMM reserve through
single actions. She can deposit, redeem, or swap crypto-assets in change of others in the AMM.
However, she can perform the transaction only if she has the needed capital upfront to cover it.
For instance, consider the example of Figure 1 where there are two users A and B that interact
with two AMMs performing a sequence of swap actions 𝑠1𝑠2𝑠3𝑠4. Initially, user A owns 4 tokens
of type 𝜏2, no tokens of types 𝜏0 and 𝜏1 (denoted with the notation A[0 ∶ 𝜏0, 0 ∶ 𝜏1, 4 ∶ 𝜏2] in the
figure); whereas user B has 4 tokens of type 𝜏0, no tokens of types 𝜏1 and 𝜏2. The AMMs have 12
tokens type of 𝜏0, 𝜏1 and 𝜏1, 𝜏2, respectively (denoted with {12 ∶ 𝜏0, 12 ∶ 𝜏1} and {12 ∶ 𝜏1, 12 ∶ 𝜏2}
in the figure). Themain idea is that the sequence of transactionswould allowA andB to exchange
their tokens at 1-to-1 rate, via the two AMMs. In standard protocols, some transactions are
rejected because users’ balances cannot cover their fulfillment: A cannot perform 𝑠1, namely
swapping 6 tokens for at least 4 tokens of type 𝜏0, in symbols 𝑠1 = A∶ swap(6 ∶ 𝜏1, 4 ∶ 𝜏0), and
B cannot perform 𝑠2, in symbols 𝑠2 = B∶ swap(6 ∶ 𝜏1, 4 ∶ 𝜏2). Our LSM overcomes the previous
scenario. It allows users to instantaneously perform transactions whenever they lead to a state
where the overall balance is positive. Otherwise, these transactions are delayed and stored
in a queue. Once the queue is full, the protocol executes a netting procedure to discard the
transactions that make balances negative. Thus, the protocol reaches a state where no liquidity
constraints are violated, and transactions can be safely performed. The underlying idea of our
mechanism is to accept a momentary deficit in users’ balances as long as they may be covered



by subsequent transactions, for instance, a swap in a different direction made by the same user
or an update to the token reserve. Back to the example of Figure 1, our approach allows the
sequence of the actions 𝑠1𝑠2𝑠3𝑠4 (for each action in the figure, we report how it affects the user
balances and AMM reserves) to be executed since the 𝑠4 yields a state where all balances are
positive. It is not relevant if there are intermediate states where user balances are temporarily
negative (colored in the figure). In this way, our LSM permits a multi-party trade between A
and B, even when they do not have sufficient funds. In contrast, traditional AMMs reject all
four swap actions due to lack of liquidity.

3. Liquidity-saving mechanism

This section formalizes our LSM, illustrates our netting algorithm, and shows how our approach
differs from the standard one through some examples.

3.1. Formal model of Automated Market Makers

We formalize the interaction between users and AMMs as a labelled transition system (LTS). Our
semantics is based on those of Bartoletti et al. [7]. Intuitively, LTS states represent the system
configurations that store each user’s token supplies and the AMMs. Transitions represent
transactions performed by users, which may result in an update of token supplies. For the time
being, we focus only on swap actions and neglect redeem and deposit. We also assume that
swap actions require no fees and that there are no transaction fees.

3.1.1. AMM basic definitions

We assume a set 𝕋 of atomic token types (ranged over by 𝜏 , 𝜏 ′) representing native cryptocur-
rencies and application-specific tokens. In general, we denote with 𝑟 , 𝑟 ′ real numbers (ℝ), and
we write 𝑟∶ 𝜏 to denote 𝑟 atomic tokens of type 𝜏 (𝜏 ∈ 𝕋).

We also assume a set of users 𝔸 (ranged over by A,A′). The wallet of a user A is denoted by
A[𝜎A], where the partial map 𝜎A ∈ 𝕋 ⇀ ℝ represents A token balances, i.e., 𝜎A(𝜏 ) denotes the
amount of 𝜏 owned by A.

We model the AMM as a reserve of 𝑟0 ∶ 𝜏0 and 𝑟1 ∶ 𝜏1 where 𝜏0 ≠ 𝜏1, written as an unordered
pair {𝑟0 ∶ 𝜏0, 𝑟1 ∶ 𝜏1}.

The states Γ, Γ′ of the protocol are finite non-empty compositions of wallets and AMM.
Formally, they are defined as follows:

Γ = [A1[𝜎A1]| ⋯ | A𝑛[𝜎A𝑛] | {𝑟0 ∶ 𝜏0, 𝑟1 ∶ 𝜏1} | ⋯ | {𝑟𝑤 ∶ 𝜏𝑤, 𝑟𝑘 ∶ 𝜏𝑘}] (1)

and for the sake of simplicity of our formalization, we assume the following conditions: for all
𝑖 ≠ 𝑗 (𝑖) each user has a single wallet (A𝑖 ≠ A𝑗); (𝑖𝑖) distinct AMMs cannot hold exactly the same
token types ({𝜏𝑖, 𝜏 ′𝑖 } ≠ {𝜏𝑗, 𝜏 ′𝑗 }).

The labels of LTS are swap transactions that are terms of the form

A∶ swap(𝑥 ∶ 𝜏0, 𝑦∗ ∶ 𝜏1) (2)



meaning that user A transfers 𝑥 ∶ 𝜏0 to the AMM {𝑟0 ∶ 𝜏0, 𝑟1 ∶ 𝜏1} specifying that she wants
to receive back at least 𝑦∗ units of token 𝜏1 in return. The amount of token 𝑦∗ must meet the
constraint 0 < 𝑦∗ ≤ 𝑦 where 𝑦 = 𝑥 ⋅ 𝑆𝑋(𝑥, 𝑟0, 𝑟1) (see below for 𝑆𝑋) to preserve the constant-
product swap rate of the reserve. In our mechanism, 𝑦∗ represents a minimum acceptable
threshold for the amount of token a user expects to receive from an exchange with an AMM
reserve. A transaction will be rejected if the swap rate does not ensure the user receives at
least this amount. Users submit their actions without knowing whether they will be executed
at the resulting swap rate. In our formalization, we adopt the Constant Product Market Maker
(CPMM) which is one of the most popular forms of DEX that considers a trade valid if the value
of the reserve before and after (with an additional amount for fees) is constant or simply the
same. More precisely, we consider the constant product swap rate that is the most commonly
implemented in Uniswap [8], SushiSwap [9], and Curve [10] protocols. We use the swap rate
function in all instances throughout this paper. In particular, when a user swaps a token 𝜏0 with
an AMM {𝑟0 ∶ 𝜏0, 𝑟1 ∶ 𝜏1}, the actual amount 𝑦 of 𝜏1 is calculated using the following formula:

𝑆𝑋(𝑥, 𝑟0, 𝑟1) =
𝑟1

(𝑟0 + 𝑥)
(3)

This rate ensures that the evolution and the update of an AMM from {𝑟0 ∶ 𝜏0, 𝑟1 ∶ 𝜏1} to
{𝑟0 + 𝑥 ∶ 𝜏0, 𝑟1 − 𝑦 ∶ 𝜏1} preserve the ratio between the reserve maintaining a constant level of
tokens:

𝑟0 ⋅ 𝑟1 = (𝑟0 + 𝑥) ⋅ (𝑟1 − 𝑥 ⋅
𝑟1

𝑟0 + 𝑥
) = 𝑟0 ⋅ 𝑟1 (4)

The formula above is derived by substituting the definition of 𝑆𝑋(𝑥, 𝑟0, 𝑟1) from the equation (3)
in place of 𝑦, then, by performing some algebraic simplification to obtain again 𝑟0 ⋅ 𝑟1. The
actions that result in overdrafts on users’ balances are not immediately executed but are stored
in a queue Λ. Formally, a queue is a term obtained by the following grammar:

Λ ∶= ∅ ∣ Λ ∘ 𝑠 (5)

where ∅ denotes an empty queue with no pending actions, and Λ ∘ 𝑠 a queue Λ where its head
is the action 𝑠. In the semantic rules below, we use Λ ∘ 𝑠 to represent when an action 𝑠 is added
to the queue Λ. Moreover, we write |Λ| to indicate the size of the queue Λ. For instance, ∅ is
an empty queue with no pending action; while the term ∅ ∘ 𝑠1 denotes a queue with a single
action 𝑠1 that is equal to A∶ swap(6 ∶ 𝜏1, 4 ∶ 𝜏0); and the term ∅ ∘ 𝑠1 ∘ 𝑠2 denotes a queue with
two actions: the tail is 𝑠1 = A∶ swap(6 ∶ 𝜏1, 4 ∶ 𝜏0) and the head is 𝑠2 that corresponds to
B∶ swap(4 ∶ 𝜏2, 6 ∶ 𝜏1). The LTS states are configurations defined as a 3-tuple ⟨Γ, Γ′, Λ⟩ where
the first component is a state Γ of the form (1), the second one Γ′ is the last simulated state (see
the next subsection), and the third one is a swap action queue Λ of the form (5) of size ℓ. Given
a state Γ we define ⟨Γ, Γ, ∅⟩ as an initial configuration.

3.1.2. AMM semantics

Transitions ⟨Γ, Γ′, Λ⟩
𝑠
−→ ⟨Γ″, Γ‴, Λ′⟩ from a configuration to another one are triggered when a

user submits a transaction 𝑠, and are defined by the inference rules below.



It is convenient to introduce some notation for the semantics. We say that a state Γ is green
when the token supply of each user is non-negative, formally:

∀ A ∈ 𝔸 ∩ Γ, 𝜏 ∈ 𝕋, s.t. 𝜎A(𝜏 ) ≥ 0

where we denote with 𝔸∩ Γ the set of users occurring in the configuration Γ. While we say it is
red otherwise, namely if

∃ A ∈ 𝔸 ∩ Γ, 𝜏 ∈ 𝕋, s.t. 𝜎A(𝜏 ) < 0

Moreover, we denote with Γ
𝑠
=⇒ Γ′ a simulation of the transaction 𝑠 in the state Γ using the

semantic rules of [7] without constraints on users’ balances. This is why we want to maximize
the number of settled actions performed by users. Differently, we maintain checks to impose
non-negativity constraints on the AMM reserve. This means that some user balances could be
negative in the resulting state Γ′ but not AMM reserves. Given a sequence of transactions Λ,
we denote with Γ

Λ
==⇒ Γ′ the simulation of the actions in Λ. Also, we assume that when Λ is the

empty sequence 𝜖, the simulation results in an unchanged state, i.e., Γ
𝜖
=⇒ Γ. When a transition

is triggered by an action 𝑠 in a configuration ⟨Γ, Γ′, Λ⟩, we have three possible scenarios.
The first scenario arises when the simulation of 𝑠 in Γ′ reaches a green state Γ″. In this case,

we apply the following rule:

Γ′
𝑠
=⇒ Γ″ Γ″green

⟨Γ, Γ′, Λ⟩
𝑠
−→ ⟨Γ″, Γ″, ∅⟩

Cover

The rule Cover performs all the pending actions in Λ (if any), and the resulting configuration
consists of the green state, Γ″ (in the first two components), and the emptied queue.

The second scenario happens when the simulation of 𝑠 in Γ′ reaches a red state Γ″, and the
length of Λ is less than ℓ (max queue size, a parameter of our mechanism). In this case, we apply
the following rule:

Γ′
𝑠
=⇒ Γ″ Γ″red |Λ| < ℓ Λ′ = Λ ∘ 𝑠

⟨Γ, Γ′, Λ⟩
𝑠
−→ ⟨Γ, Γ″, Λ′⟩

Overdraft

The rule Overdraft enqueues 𝑠 in Λ, thus, the resulting configuration consists of the current
state Γ, the red state Γ′, and Λ′ that is Λ extended with the incoming action 𝑠.

The last scenario occurs when the simulation of 𝑠 leads to a red state Γ″, and the length of Λ
equals ℓ. In this case, we use the netting procedure (denoted by the function 𝑛𝑒𝑡 in the following
rule) to perform the settlement from the state Γ and the actions of Λ plus 𝑠.

The netting procedure identifies and returns a (possibly empty) sequence of feasible actions
Λ′. Such sequence is a subset of the input sequence Λ. The obtained subsequence Λ′ is executed
to obtain the resulting state Γ∗. All the other actions of Λ that are not selected by the procedure
are discarded.

The resulting configuration is a 3-tuple with the state Γ∗ (for the first two components) and
the empty queue for the last one (the queued actions were carried out or discarded). Formally,



we apply the following rule:

Γ′
𝑠
=⇒ Γ″ Γ″red |Λ| = ℓ Λ′ = net(Γ, Λ ∘ 𝑠) Γ

Λ′

==⇒ Γ∗

⟨Γ, Γ′, Λ⟩
𝑠
−→ ⟨Γ∗, Γ∗, ∅⟩

Netting

It is worth remarking that the mechanism provided in this section is agnostic with respect to
the netting procedure that we invoke in a black-box manner. For example, a simple procedure
could be to discard all enqueued transactions. The next section introduces a more meaningful
procedure. Also, we remark that when we apply the above rule, the queue Λ contains a prefix
of actions leading to a red state that is not balanced by other actions in the queue. Otherwise,
the rule Cover would be applicable. The rule invokes the netting procedure to execute a subset
of actions that allows the AMM to progress.

Finally, note that our configurations and semantic rules could be written without Γ′ (the 2nd
component of the configuration recording the simulated/speculative final state) and replacing

the premise Γ′
𝑠
=⇒ Γ″ with Γ

Λ∘𝑠
===⇒ Γ″. This approach requires re-computing the final state every

time a new action is performed. These re-computations are not efficient in an implementation
where it is more convenient to store the intermediate state. We decided to follow this approach
to make our formalization coherent with the implementation.

3.2. Netting problem

Here, we provide an algorithm for the netting procedure 𝑛𝑒𝑡 invoked in Netting rule above.
The netting problem is defined as follows: Given as inputs a state Γ, a queue Λ, find a subset Λ′

of Λ, whose actions lead to a green state Γ∗ from Γ. Recall that the liquidity constraints required
to each user are satisfied in a green state. Ideally, netting aims at finding an optimal solution,
maximizing a specific parameter. For example, one may want to maximize the size of Λ′, the
number of users affected, or the amount of tokens involved. We formalize the netting as an
optimization problem that, given as inputs a state Γ of the LTS and a queue Λ, maximizes the
size of Λ′, a queue, whose actions bring to a valid state Γ∗ that meet the liquidity constraints:

max |Λ′| (6)

subject to

Γ
Λ′

−−→ Γ∗ (7)

Γ∗ green (8)

Note that the liquidity constraints (8) are satisfied if the final state Γ∗ is a green (there is no
overdraft in users’ wallets). The problem in financial literature is known as bank payment
clearance, which is NP-hard [4, 11], so we adopt a heuristic algorithm to implement the netting
procedure that avoids enumerations and tries to maximize the number of transactions performed.

Since we need an algorithm that can run on a smart contract (thus incurring affordable gas
expenses), we adopt a heuristic approach that sacrifices optimality for efficiency, and we propose
Algorithm 1 that runs in polynomial time (quadratic in the size of the queue, at worst).



Algorithm 1 Heuristic netting procedure implementation
Input: Λ = [𝑠1, 𝑠2, … , 𝑠𝑙], Γ
Output: Λ𝑟
Initialization: Λ𝑟 ← Λ, Γ0 ← Γ
1: Γ0

Λ𝑟==⇒ Γ𝑙 ▷ Starting simulation
2: while Γ𝑙 red ∧ Λ𝑟 ≠ ∅ do ▷ Final state has overdraft
3: select 𝑚𝑖𝑛 𝑖 s.t. 𝑠𝑖 ∈ Λ𝑟 where 𝜎A(𝜏 ) < 0 ▷ Select action that overdraft
4: Λ𝑟 ← Λ𝑟 − 𝑠𝑖 ▷ Update actions queue
5: Γ𝑖 ← Γ𝑖−1 ▷ Update last green state

6: Γ𝑖
𝑠𝑖+1===⇒ Γ𝑖+1

𝑠𝑖+2===⇒ Γ𝑖+2⋯
𝑠𝑓
==⇒ Γ𝑓 ▷ Run the simulation until all balances are nonnegative

7: Γ𝑙 ← Γ𝑓 ▷ Update the variable Γ𝑙
8: end while
9: return Λ𝑟

Intuitively, Algorithm 1 simulates the swap actions ignoring the liquidity constraints. It starts
by initializing Λ𝑟 with Λ, the initial queue of pending actions, and Γ0 with Γ, the initial state.

It then starts a loop (line 2), where it simulates action execution until either the final state Γ𝑙
is not red or the queue Λ𝑟 becomes empty, namely, until there are still actions to be processed
and overdrafts in the system. During each iteration, we select from Λ𝑟 the first action 𝑠𝑖 that
makes the balance of some account A become negative, i.e., the execution of 𝑠𝑖 leads Γ𝑙 to red
state (line 3). Then, the algorithm removes 𝑠𝑖 from Λ𝑟 (line 4) and updates the simulation state
Γ𝑖 (line 5) by reverting 𝑠𝑖. We achieve that by simply considering the previous state Γ𝑖−1 that is
the last green state. After we recover to the last green state, the simulation is run again but
from Γ𝑖 using the actions following 𝑠𝑖 until all balances are non-negative. As a result of this last
simulation, we obtain the green state Γ𝑓 (line 6). Finally, Γ𝑙 is updated with the final state Γ𝑓
(line 7) and the loop starts again.

These steps are iterated until we obtain a green state or empty Λ𝑟. When this happens,
the algorithm returns Λ𝑟. In the following section, we provide an example of execution of
Algorithm 1.

3.3. Liquidity-saving behavior

Our mechanism enables liquidity-saving behavior that is not possible in ordinary AMMs. An
example is the simultaneous change of tokens through AMMs that we presented in Section 2.
Another interesting behavior enabled by our mechanism is the ability to perform arbitrage on
multiple AMMs simultaneously and with no liquidity.

3.3.1. Liquidity-saving arbitrage Example

Assume to have three AMMs with the following token reserves

{8 ∶ 𝜏0, 18 ∶ 𝜏1}, {8 ∶ 𝜏1, 18 ∶ 𝜏2}, {8 ∶ 𝜏2, 18 ∶ 𝜏0}



If we assume, a 1-to-1 exchange rate, we could see three arbitrage opportunities, only available
to users with sufficient funds. Now suppose that a user A has no tokens but wants to perform
the following actions 𝑠1𝑠2𝑠3:

A∶ swap(4 ∶ 𝜏0, 6 ∶ 𝜏1),A∶ swap(4 ∶ 𝜏1, 6 ∶ 𝜏2),A∶ swap(4 ∶ 𝜏2, 6 ∶ 𝜏0)

When considering AMMs without our mechanism, all the actions are discarded because A does
not have an upfront balance. Figure 2 shows a flow diagram of the actions performed adopting
our mechanism. Now 𝑠1𝑠2 are enqueued because they cause an overdraft that is then covered by
𝑠3. The execution of 𝑠3 results in the following green state:

[A[2 ∶ 𝜏0, 2 ∶ 𝜏1, 2 ∶ 𝜏2]|{12 ∶ 𝜏0, 12 ∶ 𝜏1}|{12 ∶ 𝜏1, 12 ∶ 𝜏2}|{12 ∶ 𝜏2, 12 ∶ 𝜏0}]

The above scenario has similarities with the traditional finance scenario known as gridlock [6]

User A

[0 ∶ 𝜏0, 0 ∶ 𝜏1, 0 ∶ 𝜏2]

AMM1

{8 ∶ 𝜏0, 18 ∶ 𝜏1}

AMM2

{8 ∶ 𝜏1, 18 ∶ 𝜏2}

AMM3

{8 ∶ 𝜏2, 18 ∶ 𝜏0}

𝑠1 = A∶ swap(4 ∶ 𝜏0, 6 ∶ 𝜏1)
A[−4 ∶ 𝜏0, 6 ∶ 𝜏1, 0 ∶ 𝜏2]|𝐴𝑀𝑀1{8 ∶ 𝜏0, 18 ∶ 𝜏1}

𝑠2 = A∶ swap(4 ∶ 𝜏1, 6 ∶ 𝜏2)
A[−4 ∶ 𝜏0, 2 ∶ 𝜏1, 6 ∶ 𝜏2]|𝐴𝑀𝑀2{12 ∶ 𝜏1, 12 ∶ 𝜏2}

𝑠3 = A∶ swap(4 ∶ 𝜏2, 6 ∶ 𝜏0)
A[2 ∶ 𝜏0, 2 ∶ 𝜏1, 2 ∶ 𝜏2]|𝐴𝑀𝑀3{12 ∶ 𝜏2, 12 ∶ 𝜏0}

Figure 2: Flow diagram of the Example 3.3.1 among User A and three AMMs.

where banks cannot settle their payments individually due to their insufficient liquidity. Through
netting, each bank submits its payment instructions to designated queues, performing multi-
lateral settlement exclusively for the net obligations. Back to our example, user A overcomes
the stuck state with possible no evolution of the system of traditional AMMs protocol where
individual swap incurs in an overdraft, enqueuing her actions and atomically perform them
when reaching a positive balance.

The approach we developed may settle transactions on the blockchain differently than
the ones used by standard AMM protocols: netting can select transactions that the standard
approach discards and vice versa. This difference may affect users’ rewards and lead them to
apply new/different market strategies. The following scenario exemplifies a case in which the
netting of transactions could prevent swaps that would otherwise be executed.



3.3.2. Two Users scenario Example

Consider a scenario where there are two users A and B and two AMMs with the following
wallets and reserves:

[A[0 ∶ 𝜏0, 0 ∶ 𝜏1, 4 ∶ 𝜏2]|B[4 ∶ 𝜏0, 6 ∶ 𝜏1, 0 ∶ 𝜏2]|{12 ∶ 𝜏0, 12 ∶ 𝜏1}|{18 ∶ 𝜏1, 8 ∶ 𝜏2}]

Assume that user A wants to perform two actions. The first one, 𝑠1 = A∶ swap(6 ∶ 𝜏1, 4 ∶ 𝜏0),
on the first AMM, {12 ∶ 𝜏0, 12 ∶ 𝜏1}, and the second one, 𝑠2 = A∶ swap(4 ∶ 𝜏2, 6 ∶ 𝜏1) on the
second AMM, {18 ∶ 𝜏1, 8 ∶ 𝜏2}. User B wants to perform an action 𝑠3 = B∶ swap(6 ∶ 𝜏1, 4 ∶ 𝜏0)
on the first AMM.

User A

[0 ∶ 𝜏0, 0 ∶ 𝜏1, 4 ∶ 𝜏2]

AMM1

{12 ∶ 𝜏0, 12 ∶ 𝜏1}

AMM2

{18 ∶ 𝜏1, 8 ∶ 𝜏2}

User B

[4 ∶ 𝜏0, 6 ∶ 𝜏1, 0 ∶ 𝜏2]

𝑠1 = A∶ swap(6 ∶ 𝜏1, 4 ∶ 𝜏0)
A[4 ∶ 𝜏0, −6 ∶ 𝜏1, 4 ∶ 𝜏2]|𝐴𝑀𝑀1{8 ∶ 𝜏0, 18 ∶ 𝜏1}

𝑠2 = A∶ swap(4 ∶ 𝜏2, 6 ∶ 𝜏1)
A[4 ∶ 𝜏0, 0 ∶ 𝜏1, 0 ∶ 𝜏2]|𝐴𝑀𝑀2{12 ∶ 𝜏1, 12 ∶ 𝜏2}

𝑠3 = B∶ swap(6 ∶ 𝜏1, 4 ∶ 𝜏0)
B[8 ∶ 𝜏0, 0 ∶ 𝜏1, 0 ∶ 𝜏2]|𝐴𝑀𝑀1{8 ∶ 𝜏0, 18 ∶ 𝜏1}

Figure 3: Flow diagram of the Example 3.3.2 among two Users and two AMMs.

When considering an AMM without our mechanism, 𝑠1 and 𝑠2 are discarded because A does
not have enough balance, whereas 𝑠3 is performed reaching the configuration:

[A[0 ∶ 𝜏0, 0 ∶ 𝜏1, 4 ∶ 𝜏2]|B[8 ∶ 𝜏0, 0 ∶ 𝜏1, 0 ∶ 𝜏2]|{8 ∶ 𝜏0, 18 ∶ 𝜏1}|{18 ∶ 𝜏1, 8 ∶ 𝜏2}]

Differently with our mechanism 𝑠1 is enqueued, and when A performs 𝑠2 on the second AMM,
both actions are settled because 𝑠2 covers the overdraft on A’s wallet (see Figure 3). While 𝑠3 is
not executed on the first AMM because the execution of the previous actions changes the ratio
in the reserve, and hence the swap rate. Once 𝑠1𝑠2 are performed, the ratio of the first AMM is
updated and 𝑠3 is discarded (as the red and crossed box denotes in Figure 3) because user B can
swap 6 tokens of 𝜏1 with 2 tokens of 𝜏0 that is a different swap amount compared to what she
wants to perform (6 tokens of 𝜏1 with 4 tokens of 𝜏0).

This example highlights that the standard mechanism and ours generally settle different
transactions, so they are incomparable. However, the behavior is not uncommon from what
happens in ordinary AMMs where a user (in this case B) would typically decide to trade at a
swap rate based on his local view or speculation on the state of AMMs, which can of course
change if transactions of other users (in this case A) are executed.



3.3.3. Netting scenario Example

Consider a scenario where there is user A and three AMMs with the following wallet and
reserves:

[A[0 ∶ 𝜏0, 0 ∶ 𝜏1, 4 ∶ 𝜏2]|{12 ∶ 𝜏0, 12 ∶ 𝜏1}|{18 ∶ 𝜏1, 8 ∶ 𝜏2}|{12 ∶ 𝜏2, 12 ∶ 𝜏0}]

Assume user A wants to execute three actions sequentially: 𝑠1, 𝑠2, and 𝑠3. With 𝑠1 user A swaps
6 tokens of type 𝜏2 for 4 tokens of type 𝜏0 on the third AMM, in symbols 𝑠1 = A∶ swap(6 ∶
𝜏2, 4 ∶ 𝜏0). With 𝑠2 user A swaps 6 tokens of type 𝜏1 for 4 tokens of type 𝜏0 on the first AMM,
namely 𝑠2 = A∶ swap(6 ∶ 𝜏1, 4 ∶ 𝜏0). Finally, with 𝑠3 user A exchanges 4 tokens of type 𝜏2 for 6
tokens of type 𝜏1 on the second AMM: 𝑠3 = A∶ swap(4 ∶ 𝜏2, 6 ∶ 𝜏1).

User A

[0 ∶ 𝜏0, 0 ∶ 𝜏1, 4 ∶ 𝜏2]

AMM1

{12 ∶ 𝜏0, 12 ∶ 𝜏1}

AMM2

{18 ∶ 𝜏1, 8 ∶ 𝜏2}

AMM3

{12 ∶ 𝜏2, 12 ∶ 𝜏0}

𝑠1 = A∶ swap(6 ∶ 𝜏2, 4 ∶ 𝜏0)
A[4 ∶ 𝜏0, 0 ∶ 𝜏1, −2 ∶ 𝜏2]|𝐴𝑀𝑀3{18 ∶ 𝜏2, 8 ∶ 𝜏0}

𝑠2 = A∶ swap(6 ∶ 𝜏1, 4 ∶ 𝜏0)
A[8 ∶ 𝜏0, −6 ∶ 𝜏1, −2 ∶ 𝜏2]|𝐴𝑀𝑀1{8 ∶ 𝜏0, 18 ∶ 𝜏1}

𝑠3 = A∶ swap(4 ∶ 𝜏2, 6 ∶ 𝜏1)
A[8 ∶ 𝜏0, 0 ∶ 𝜏1, −2 ∶ 𝜏2]|𝐴𝑀𝑀2{12 ∶ 𝜏1, 12 ∶ 𝜏2}

Figure 4: Flow diagram of the Example 3.3.3 among User A and three AMMs.

Upon executing the three actions illustrated in Figure 4, the system achieves a red state where
the user’s wallet fails to meet liquidity constraints. Consequently, our mechanism triggers
the Netting rule and runs the Algorithm 1. During this process, 𝑠1 is identified as the first
action leading to an overdraft in A’s wallet (see line 3 of Algorithm 1), and is thus removed
from the queue. After this adjustment, the simulation is run again, resulting in a green state,
achieved through the execution of 𝑠2 followed by 𝑠3. It is worth noting that without 𝑠1, 𝑠3
covers the overdraft caused by 𝑠2, thus, the reached state is green. This example illustrates
how our netting mechanism manages transactions while considering liquidity constraints: our
mechanism enables the execution of two actions that subsequently cover the balance overdraft,
which would typically not be feasible using a standard semantics to execute the transactions.

4. Related work

The widely spread interest in distributed ledger technology has fostered the development of
optimized trading protocols. This section illustrates the most relevant proposals concerning
netting mechanism, optimal routing problems, and intent-centric protocols, and compares them
with our work.



4.1. Netting mechanism

Several papers have developed decentralized inter-bank payment systems where the role of
the payment instructions operator is implemented through a public ledger-based protocol, and
the netting mechanism through smart contracts. As a first example of this line of work, Jasper-
Ubin Project [12] investigates the possibility of achieving near-instant cross-border payments
using blockchain. The project removes the single point of failure and obtains an immediate
settlement without transaction reconciliation but does not give a decentralized multilateral
netting. Naganuma et al. [13] provide a secure netting protocol using the Hyperledger Fabric
channel and its access control mechanism. Their secure settlement protocol does not require a
specific central server and keeps part of the payment transaction information secret. Similarly,
Wang et al. [14] introduce a blockchain-based netting solution that relies on a central party and
preserves the total amount of liquidity, revealing only the net amount of each bank. Cao et al. [6]
propose a non-interactive zero-knowledge proof mechanism to post payment instructions on a
public ledger. More precisely, each bank locally computes the netting results and submits its
proposal to a coordinating smart contract. However, this approach is not robust against cheating
users, who can post-invalid partial netting proposals. The proposals above consider blockchain-
related technologies to develop standard financial services, whereas our work introduces a
standard financial mechanism into DeFi protocols. To the best of our knowledge, ours is the
first attempt to apply LSM used by the works above [13, 14, 6] to DeFi services.

4.2. Optimal routing problems

Another relevant research field investigates how to execute several trades of different crypto-
assets on networks of multiple CFMMs. These approaches are known as routing problems on
Decentralized Exchanges. Angeris et al. [15] and Diamandis et al. [16] pointed out that the
optimal routing problem can be formulated as an efficiently solvable optimization problem.
Solving such a problem means determining the most efficient path for a trade, i.e., a sequence
of crypto-assets exchanges in a network of CFMMs that realizes a given trade, to maximize the
user’s utility and minimize its costs.

Danos et al. [17] introduce arbitrage scenarios within exchange networks and develop an
effective global routing system. In detail, they explore how optimal routing strategies are
employed to capitalize on price differentials across multiple exchanges, enhancing opportunities
for profitable arbitrage. Similar to those approaches, our mechanism aims at finding a solution
to maximizing a specific parameter. However, the main difference between ours and the above-
mentioned papers [15, 16, 17] is the objective function to maximize. As illustrated in Section 3,
our objective function consists of maximizing the number of actions in the queue, i.e., the
number of transactions to settle. On the other hand, those proposals formulate the optimization
problem in terms of the largest possible user’s utility, and their routing problem tries to detect
the most convenient and profitable route for executing trades across AMMs of the same and
different token types belonging to the network.



4.3. Intent-centric protocols

A significant area of research in Ethereum ecosystem focuses on addressing the aggregated
token swap problem, i.e., determining a sequence of swaps on AMMs that realizes a given trade
by improving the liquidity of users. Various DeFi applications, such as UniswapX [18], Uniswap
V4 [19], and CoW Protocol [20], tackle this challenge by adopting intent-centric protocols. These
protocols shift the focus from transaction execution to defining users’ desired outcomes, creating
competitive routing marketplaces, introducing gas-free cross-chain swaps, and incorporating
batch auctions to discover profitable prices.

UniswapX [18] implements intent-centric swaps, combining on-chain and off-chain liquidity
for a competitive trading marketplace. Uniswap V4 [19] enhances liquidity with hooks, enabling
gas-free cross-chain swaps and offering flexibility through customizable features. CoW Proto-
col [20] utilizes batch auctions for efficient price discovery, and CoW Swap, its decentralized
exchange interface, introduces CoW Hooks, allowing custom actions before and after trades.

While these protocols aim to optimize trading across multiple AMMs, our approach stands
out by introducing a Liquidity-Saving Mechanism designed to maximize users’ swap actions
without a formalized analysis of users’ intent.

5. Conclusion

We have proposed liquidity-optimized AMMs, providing an LSM that settles AMM swap actions
through a netting algorithm at the application level. We precisely characterized our mechanism
by extending the operational semantics proposed by Bartoletti et al. [7]. We removed the
liquidity constraints on participants’ balances when performing swap actions and introduced a
queue of actions. When the queue size reaches a fixed bound, and the liquidity constraints are
unsatisfied, a greedy algorithm is triggered to compute a sequence of actions with no liquidity
violation. Our mechanism enables novel scenarios, allowing users to perform exchanges and
arbitrages without the required upfront funds.

In future work, we plan to extend our mechanism to deal with the deposit and redeem actions
and take into account price trends, enabling us to consider realistic DeFi protocols. Moreover,
we want to introduce the formalization of fixed transaction costs (such as gas costs) in the
LTS. Another line of investigation is to understand if knowing the internals of the netting
mechanism encourages users to misbehave and take advantage of it. Additionally, we want to
extend our mechanism to take into account also other properties, such as, for example, fairness
when selecting the actions to remove. Furthermore, we would like to study the impact of the
queue length (a key parameter in our mechanism) on the efficiency of our LSM. We also plan to
investigate the impact of validators at the consensus layer on our approach and whether they
could be the ones promoting transaction orders that result in near-to-optimal queue orderings,
hence taking care of the optimal netting problem.

Another line of research involves considering our mechanism work in different AMMmodels,
such as Concentrated Liquidity which has been recently added to Uniswap v3 [21]. Furthermore,
our formalization is designed to be implemented as a smart contract on the blockchain. It
encompasses the management of various aspects such as user subscriptions, netting procedures
with corresponding incentive mechanisms, queue management, and striking a balance between



the mechanism’s cost and the incentives it offers. An additional research direction involves
exploring off-chain management of the actions, either through a trusted third party or in a
decentralizedmanner. This approach aims to ensure the proper behavior of the queue, mitigating
potential control issues by validators and simplifying the analysis of incentivized actions for
each validator. Finally, we plan to re-model our mechanism, considering users’ intents and
trying to maximize their utility related to their desired outcome. In this way, we could better
analyze user objectives and strategies.
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