
zkSNARKs Libraries for Blockchains: a Comparative Study
Domenico Tortola

1
, Andrea Pelosi

1,2
, Giuseppe Gabriele Russo

1
, Paolo Mori

3,*
and

Laura Ricci
1

1University of Pisa, Pisa, Italy
2University of Camerino, Camerino, Italy
3Consiglio Nazionale delle Ricerche - Istituto di Informatica e Telematica, Pisa, Italy

Abstract
Blockchain technology is currently being used in a large number of application scenarios besides the cryptocur-

rency exchange one, mainly thanks to the introduction of smart contracts, which allow to implement applications

that are executed on the blockchain (Decentralised applications). Smart contracts’ code and data are visible by all

the participants to the blockchain, thus preventing the adoption of blockchain technology in those application

scenarios where data privacy is required. To address this problem, Zero Knowledge Succint Non-interactive

Argument of Knowledge (zkSNARK) proofs have been proposed, which allow smart contracts to verify a known

condition on secret data without revealing it. To integrate the zkSNARK technology in their smart contracts,

developers can take advantage of two popular libraries: Circom and Zokrates. However, when choosing which of

the two to adopt, developers should take into account the cost in terms of gas and storage space of the resulting

code. To this aim, this paper contributes by performing an experimental comparison of the two libraries. In

particular, three well know problems requiring data privacy have been selected, the smart contract implementing

the corresponding privacy preserving verification of a known condition on secret data have been produced

exploiting the two libraries, and the related performance in terms of smart contracts deployment and execution

costs and storage space required for the zkSNARK data (circuits, proofs and keys) have been measured, compared,

and discussed.

Keywords
Blockchain, Privacy, Zero Knowledge, zkSNARK

1. Introduction

In the last years, blockchain technology is having an ever increasing spread both in research organi-

zations and business companies. As a matter of fact, the introduction of smart contracts allowing to

create Decentralised Applications (dApps) brought to the development of blockchain based solutions in

many distinct application scenarios besides the cryptocurrency exchange one, such as: electronic voting,

decentralized notary, supply chains management, identity management, access control, healthcare

records management, and many others.

One of the main features that contributes to the success of the blockchain technology is transparency,

i.e., the information (code and data) stored on a blockchain can be seen by all the participants. If, on

the one hand, this feature allows all participants to potentially access and verify all the transactions

on the blockchain, on the other hand it does not allow to preserve the privacy of the data stored on

the blockchain and used for smart contracts execution, thus preventing the adoption of blockchain

technology in many applications.

For instance, let us suppose that the University of Pisa wants to grant the right of executing a given

smart contract 𝑆 for conducting the experiments for the Distribute Ledger Technology course to the

students who have paid a predefined fee or have a low income. To allow 𝑆 to decide whether to grant

the access to a student invoking it, the University of Pisa (or another trusted actor) could register the

student’s income or the fee payment on the blockchain, but this solution does not preserve student’s

*
Corresponding author

$ domenico.tortola@phd.unipi.it (D. Tortola); andrea.pelosi@phd.unipi.it (A. Pelosi); g.russo55@studenti.unipi.it

(G. G. Russo); paolo.mori@iit.cnr.it (P. Mori); laura.ricci@unipi.it (L. Ricci)

� 0009-0003-4295-0960 (D. Tortola); 0000-0002-0877-7063 (A. Pelosi); 0000-0002-6618-0388 (P. Mori); 0000-0002-0877-7063

(L. Ricci)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:domenico.tortola@phd.unipi.it
mailto:andrea.pelosi@phd.unipi.it
mailto:g.russo55@studenti.unipi.it
mailto:paolo.mori@iit.cnr.it
mailto:laura.ricci@unipi.it
https://orcid.org/0009-0003-4295-0960
https://orcid.org/0000-0002-0877-7063
https://orcid.org/0000-0002-6618-0388
https://orcid.org/0000-0002-0877-7063
https://creativecommons.org/licenses/by/4.0

privacy because it would disclose the student’s income. Hence, a solution allowing 𝑆 to evaluate

conditions on secret values without disclosing them is required.

This is where Zero Knowledge Succint Non-interactive Argument of Knowledge (zkSNARK) proofs

[1, 2] come into play. As a matter of fact, the zkSNARK technology allows to write smart contracts able

to verify a known condition on secret data without revealing the latter. This opens the way to a large

number of blockchain based applications where data privacy is a critical requirement. For instance,

the authors of [3] exploit the zkSNARK technology to implement smart contracts evaluating Attribute

Based Access Control (ABAC) policies [4] where the outcome of the policy evaluation is published on

the blockchain (i.e., access granted/denied) without actually disclosing on the blockchain the values of

the attributes used for the policy evaluation.

The easiest way for developing a smart contract based application exploiting the zkSNARK technology

is exploiting an existing library, being Circom and Zokrates among the two most popular ones. This

would relieve the developers from learning the mathematical foundations the zkSNARK technology is

based on, since they should simply need to learn the specific languages used by the two libraries to

express the conditions that will be evaluated on secret data. However, when choosing which of the

two libraries to adopt for their dApps, developers should take into account the cost in terms of gas and

storage space of the resulting code.

In the light of the previous considerations, the contribution of this paper is an evaluation and

comparison between the two popular libraries implementing the zkSNARK protocol, Circom and

Zokrates. In particular, such evaluation has been executed by implementing three well known problems

where a privacy preserving condition involving secret inputs must be verified on the blockchain, namely

the age verification, the Sudoku, and the Hamiltonian cycle problems, and by i) computing the gas cost

of deploying and executing the corresponding smart contract, and ii) evaluating the size of the proofs,

produced keys, and circuits varying the dimensions of the problems. These experimental results are

then discussed to provide a kind of guideline for developers helping them to understand which library

is more convenient to be used in their specific application scenarios.

The paper is structured as follows: Section 2 recalls the relevant background on blockchain and zero

knowledge proofs, Section 3 briefly surveys relevant research in the area of zkSNARKs for blockchain,

Section 4 introduces the Circom and ZoKrates libraries in more details. We perform an experimental

comparison between the two libraries in Section 5 and discuss our findings in Section 6. We sum up the

main insights and conclude our paper in Section 7.

2. Background

2.1. Blockchain technologies

A blockchain is a data structure made by data blocks, usually storing data in form of transactions,

connected each other by hash pointers. This transaction ledger is shared among a peer-to-peer network,

with every node holding a copy of the entire data structure. Users in the network execute transactions,

which are grouped in a block and appended to the ledger after the block is validated. The block validation

is performed through a consensus algorithm, with Proof-of-Work (PoW) [5] and Proof-of-Stake (PoS)

[6] as the most used. After the validation, every node updates their copy of the ledger appending the

new block.

Blockchains were popularized by Bitcoin [7], which built a decentralized network dedicated to

digital currency trading and secured by cryptography, while newer projects such as Ethereum [8]

focused on blockchain based application execution introducing smart contracts, blocks of code executed

automatically executed on the blockchain as a transaction execution.

2.2. Zero Knowledge proofs

Zero Knowledge proofs (ZKPs) are a broad class of cryptographical constructs first introduced by

Goldwasser et al. in [9]. A Zero Knowledge Proof involves two actors: a prover and a verifier. The

former aims to prove the validity of a statement to the latter, without leaking additional information

besides the validity of the statement being proved. Hence, ZKPs on the one hand allow to keep some

data secret, while, on the other hand, allow to demonstrate that a statement based on such data is

verified. For ZKP systems, three properties hold:

• Completeness: if the statement is true, a honest prover will always be able to convince the verifier

except with negligible probability;

• Soundness: if the statement is false, a malicious prover will be able to convince a verifier at most

with negligible probability;

• Zero Knowledge: if the statement is true, the verifier (even if malicious) will not learn anything

about the statement from the proof besides the fact that the statement is true.

One common example to understand ZKPs is the well known Alibaba cave [10]: in this scenario,

there is a ring shaped cave with only one entrance and a magic door at the other side of the ring, which

can only be opened using a magic word. A prover, named Peggy, knows the secret magic word and a

verifier, named Victor, challenges Peggy to prove the knowledge of the magic word. Therefore, Peggy

has to provide to Victor a proof about the knowledge of such word without revealing it. To provide

such proof of knowledge, the two play a game: Peggy will enter the cave and picks a side to proceed,

that could be left or right, say left. Victor, who do not know which side Peggy picked, will ask to Peggy

to come out from the cave from a specific side. If Victor picks the left side as exit, Peggy will simply

walks back. If Victor picks the right side instead, Peggy has to use the magic word to open the door and

walk over the entire ring to come out from the right side. In both cases, Peggy will be able to pick the

correct exit side. This single game could not be sufficient to convince Victor about the knowledge of

the word: there is a 50% chance that Peggy simply entered the correct side from the start, not using the

magic word at all. The game can be repeated multiple times, reducing game by game the possibility

that Peggy is simply lucky, until Victor is convinced.

2.2.1. zkSNARKs

zkSNARKs (Zero Knowledge Succint Non-interactive Argument of Knowledge) [2] are a very popular

class of ZKP protocols. In a zkSNARK setting, an efficient (i.e. polynomially bounded) prover wants

to prove the knowledge of a witness for a statement to a verifier in a complete, knowledge-sound and

zero-knowledge way. Knowledge soundness is a stronger notion of soundness which states that a

(malicious) prover that does not know a witness for a given statement can not convince a verifier about

the validity of the statement. To model this, a knowledge extractor is employed, i.e. an algorithm

that can compute a witness whenever a (malicious) prover provides a valid argument. The notion of

“Argument" refers to the fact that the knowledge-soundness property should be satisfied only for a

poly-bounded prover, in contrast with the stricter notion of “Proof", in which the prover has unbounded

computational resources, see [11, 12] for details.

Besides the properties previously mentioned, a zkSNARK system guarantees two additional properties:

succintness, meaning that the proof has a small size and can be verified efficiently, and non-interactivity,

meaning that constructing and verifying a proof requires little interaction between the prover and the

verifier or no interaction at all.

zkSNARKs life cycle is made by two main phases: arithmetization and commitment. In the arithmeti-

zation phase, the statement to prove is modeled as an arithmetic circuit, that mathematically maps how

input values produces output values. One or more constraints can be defined on the model, to guarantee

the correctness of the proof. The final output of the arithmetization is a polynomial representation

which accounts both the model and the constraints. On the other hand, in the commitment phase the

prover uses cryptographical schemes to generate values (the commitments) that will be used in the

verification process to guarantee the zero knowledge property. Usually, commitments are generated

starting from the coefficients of the polynomial produced in the arithmetization phase applying hash

functions to hide the real values.

zkSNARKs usually require a preliminary trusted setup phase between the prover and the verifier, in

which they generates two keys: a proving key, which is known only to the prover and will be used to

generate the proof, and a public verification key which can be used by the verifier to verify the proof.

The setup phase produces some data, often refereed as "toxic waste", which has to be destroyed right

after the key generation to maintain the security of the protocol. If the trusted setup phase is executed

in a decentralized way, it is sufficient that one of the participants to the setup phase is honest and

deletes their part of the toxic waste.

3. Related works

The integration of zkSNARKs in blockchain based applications is a very promising and active research

line, both in literature and in enterprise applications. zkSNARKs are applied to blockchain to both

Layer 1 blockchains and Layer 2 applications. As Layer 1 application, we mention ZCash [13, 14], a

blockchain platform that implements zkSNARKs to allow users to execute private transactions. In

particular, a zkSNARK is generated to prove the validity of a private transaction to the network users

not directly involved in it, in order to make it possible to validate the transaction without reveling any

other information except of the transaction validity. On the other hand, there are several applications

of zkSNARKs in the context of blockchain Layer 2 applications, aimed to provide scalability and/or

privacy when required.

Simunic et al. in [15] survey the methods to verify computations, focusing on blockchain applications.

The authors highlight how ZKPs in general can be a powerful tool to implement verifiable computing

for Layer 2 applications, ensuring at the same time a high level of privacy.

Partala et al. [16] describe the applications of general non-interactive ZKPs to blockchain, with

particular attention to how to obtain confidential transactions and privacy-preserving smart contracts

through ZKPs. The authors describe numerous protocols and techniques for implementing ZKPs and

present several blockchain based applications exploiting them.

Kosba et al. in [17] propose a framework to build privacy-preserving smart contracts, in which users

inputs and application logic are executed off-chain and a zkSNARK, related to the off-chain result, is

verified by the on-chain smart contract.

In terms of blockchain applications, zkSNARKs are used with success in ZK rollups [18], a class of

Layer 2 applications in which zkSNARKs are used as validity proofs paired with an off-chain computation,

to assess the validity of the result of the computation, committed on the Layer 1 blockchain.

Furthermore, there is also a growing interest in benchmarking of zkSNARKs libraries, similarly to

what we will discuss in this paper. Ernstberg et al. in [19] present a framework to evaluate, in terms of

memory consumption and execution time, several zkSNARK protocols. The benchmark of zkSNARK

libraries was also studied by Baghery et al. [20], which benchmark the setup phase in a subset of

updatable ZK protocols, and by Steidtmann et al. [21] which focus on benchmarking several Circom

circuits, mostly involving hash functions. A similar work, not restricted to Circom circuits, can be

found in [22]. However, our work proposes a different point of view on the challenge of benchmark

zkSNARK libraries and protocols with respect to the mentioned related works. More specifically, our

focus is related to the blockchain applications of such libraries, being then less general-purpose with

respect of the cited works. Moreover, we focused on a wider range of evaluated scenarios, not limited

to cryptographical operations. Finally, the metrics we evaluated in our experiments are not limited

to the memory evaluations or the time consumption, but we provided the evaluation of several other

metrics about the smart contract related to an on-chain proof verifier.

4. Implementing zkSNARK protocols on Ethereum: Circom and
ZoKrates

There are are several ways to implement zkSNARK protocols that produce proofs verifiable on Ethereum.

Among them, in this paper we focus on two of the most popular zkSNARK libraries: Circom and

Zokrates. The motivations behind this choice are multiple: first, the two libraries are widely used to

generate zkSNARKs in a various range of different applications, including blockchain related ones.

The integration with blockchains is the main motivation driving our selection, since both libraries are

capable to generate a verifier smart contract alongside each proof. Finally, the fact that the two libraries

have several common traits but at the same time crucial differences, as explained in the rest of this

section, make the comparison even more significant. The rest of this section describes the two libraries.

4.1. Circom

Circom [23] is a library composed by a domain-specific language, which can be used to code the

statement to prove, and a compiler which transforms the code into an arithmetic representation known

as Rank 1 Constraint System (R1CS). To execute the trusted setup, Circom integrates snarkJS as an

external library. Also, the witness has to be computed externally, using the R1CS (plus some extra

files produced compiling the circuit, according to the chosen compilation options) as input. This

operation can be executed using NodeJS or C++ wrappers. Circom language allows developers to

define the problem as a sequence of inputs (signals) and operations between them (wires), such that

the transformation into an arithmetic circuit is optimized since the development stage. Furthermore,

the language allows to distinguish between public and private inputs. Finally, the library supports the

proof verification executed by a dedicated Solidity smart contracts.

compileCircom
code

Witness

Commit +
public input valuesProof

deploy
Verifier
smart

contract

Blockchain

generates

R1CS

Private
key

Public
key

Trusted
setup

(snarkJS)

Cryptographical
parameters
generation

Key
generation

NodeJS / C++

Figure 1: Circom workflow overview

Figure 1 provides an overview about how Circom works. First, the Circom code is compiled into

the corresponding R1CS representation. An R1CS is a system of polynomials with degree 1, which

combines the arithmetic operations composing the circuit that are needed to prove the initial statement

and the constraints defined on the circuit. In Circom, the trusted setup is delegated to snarkJS, which

executes two phases: in the first phase, independent by the circuit, the CRS is generated executing

the Power of Tau [24] ceremony. In the second phase, the CRS and the R1CS are used to generate the

key pair needed to generate the proof (private key) and to verify it (public key). The R1CS is also used

to generate the witness: this operation is executed by an external component as well, in particular

using a NodeJS or a C++ dedicated module. The witness and the private key are used to generate the

proof, while the public key is used as input to generate the Solidity smart contract. The smart contract

can be deployed on any EVM based blockchain, since it is written in Solidity, to enable the on-chain

verification process.

4.2. ZoKrates

ZoKrates [25] is a zkSNARK library that provides a domain specific language to write programs defining

the statement to prove and the necessary inputs, a compiler to compile the mentioned programs into

arithmetic circuits, and a procedure to generate proofs and to verify them. The programming language

is an high-level language, making easier for developers to define the statement logic. Also, the language

allows the distinction of inputs into public and private. The compiler compiles ZoKrates programs into

an arithmetic representation called ZoKrates Intermediate Representation (ZIR).

A trusted setup is required to generate the private and public keys which are used, respectively, to

generate and verify the proofs. Finally, ZoKrates is able to generate tailor-made Solidity smart contracts

to verify proofs on EVM based blockchains, such as Ethereum.

compileZoKrates
code

Witness

Commit +
public input valuesProof

deploy
Verifier
smart

contract

Blockchain

generates

compute

Trusted
setup

ZIR

Private
key

Public
key

Figure 2: ZoKrates workflow overview

Figure 2 illustrates the ZoKrates workflow. The ZoKrates code, written using the dedicated language,

is compiled into a ZIR by the compiler. The ZIR is an extended and more abstracted version of the

R1CS representation, which optimizes both the program execution and the proof generation. The ZIR

contains constraints (conditions to generate the arithmetic representation) and directives (used by the

interpreter). ZoKrates supports a locally executed trusted setup, which takes in input the ZIR file and

outputs a long proving key and a short verification key. The ZIR is also used to define the witness, which

includes all the data needed to generate the proof, both public and private. This witness, in combination

with the private proving key, is used to generate the proof. On the other hand, the verification key is

used to generate a Solidity smart contract, which is capable of verifying the proof generated by the

corresponding program. Such smart contract can be deployed on any EVM based blockchain to enable

on-chain proof verification.

5. Libraries comparison

Exploiting the Circom or the Zokrates library is an easy way for dApps developers for integrating

the zkSNARK technology in their dApps to protect data privacy, because they simply have to use the

specific constructs provided by the languages of the two libraries to express the conditions that needs to

be evaluated on secret data. However, when choosing the library that best fits their dApps, developers

must consider the cost in terms of gas and storage space of the resulting code.

For this reason, in this section, we consider how ZoKrates and Circom compare with each other

in three different scenarios. We assume that a Layer-2 dApp executes off-chain computation and,

after that, publishes on the blockchain a zkSNARK proof of the result so that a dedicated on-chain

smart contract can verify it. For a comprehensive comparison, we implement every scenario with both

libraries, evaluating both the prover and the verifier side.

Our goal is to provide both the research and the development communities with guidelines that

could help in choosing the most suitable zkSNARK library when building privacy preserving dApps.

We aim to show how the two libraries behave in different contexts highlightning their strenghts and

weaknesses so that developers can make an informed choice, according to their needs. For each scenario

we consider, we chose to evaluate the storage consumption by the proving setup (arithmetic circuit file

size, proving and verification key size, proof size) and the verifier smart contract deploy and execution

costs.

5.1. Scenarios and experimental results

To conduct a thorough comparison, we evaluated the two libraries against a set of problems with

increasing complexity with the goal of exploring the features offered by Circom and ZoKrates. We

defined three simple scenarios such that we can exploit several features of the programming language

provided by the two libraries and how the usage of the main syntactical contructs impact on metrics

like the circuit complexity, keys and proof size and smart contract costs, in order to provide the most

possible detailed insights about how the libraries handle problems of increasing complexity. Each

scenario that we considered in the analysis explores the usage of chosen language features, as Table

1 summarizes. This way, we are able to isolate the impact that the language features have over the

metrics we are considering.

Scenario Context Evaluated feature

Age
evaluation

Proving to be older than
a certain threshold

Numeric values and
boolean conditions

evaluation

Sudoku
solution

Proving the knowledge of
a solution for a Sudoku grid

Conditional and
iterative constructs

evaluation

Knowledge of an
Hamiltonian cycle

for a graph

Proving the knowledge of
a valid Hamiltonian cycle

for a graph

A more complex
test, putting

the pieces together

Table 1
Overview of the studied scenarios

For each scenario, we developed the actual proof of knowledge and the corresponding smart contract

that acts as the verifier both using Circom and ZoKrates. We used Groth16 [26, 27], a proving scheme

based on elliptic curve pairings, for both Circom and ZoKrates. The code of experiments, including

both the circuit coding for the two libraries and smart contract codes, is publicly available on GitHub
1
.

The experiments were performed on a commodity laptop with Intel Core i5 dual-core 1,6 GHz CPU

and 8 GB RAM 2133 MHz LPDDR3. In the rest of this section, detailed descriptions and experimental

evaluations for each of these scenarios will be presented and discussed.

5.1.1. Age evaluation

In real world scenarios, the access to services is regulated by policies, mostly defined by laws and

regulations. Such policies usually define the requirements that users need to satisfy to access the

services, and they can be based on any parameter. For instance, the purchase of a wide range of services

is limited by age: the access to sport bets, the possibility to vote, and many others. Therefore, users

have to prove to be older than a certain age threshold, which is set according to the required service or

the law, to access the service or to purchase the product.

In our tests, a prover wants to prove to be older than a certain threshold, set up by the verifier,

without disclosing their real age. Therefore, the age of the prover is considered as the witness, while

the age threshold represents the public input.

This first experiment, which is indeed very simple, aims to exploit the basic components of the

programming languages provided by the two libraries, i.e., numeric variables and boolean conditions

evaluation.

Table 2 reports the size of the files produced by the proof generation process. As expected, since we

are dealing with a simple problem, the file sizes are overall very small, with Circom files being even

smaller than the ZoKrates ones. No file exceeds the size of few KB, with the circuit file size registering

1

https://github.com/Giusgarus/zkSNArK-Protocols-Implementation [Online, accessed on 23 April 2024]

https://github.com/Giusgarus/zkSNArK-Protocols-Implementation

Circuit file
size (KB)

Proof size
(KB)

Proving key
size (KB)

Verification
key size (KB)

Circom 4 0,802 8 4

ZoKrates 139 0,849 11 4

Table 2
Storage occupation of age evaluation proof and verification components (in KB)

the biggest difference between the two libraries, with 4 KB for the Circom circuit and 139 KB for the

ZoKrates circuit. The other files, instead, have a similar size for the two libraries.

Figure 3: Smart contract costs (deploy and execution) for the age verifier smart contract

Figure 3 illustrates the costs incurred to deploy and invoke the smart contracts generated by Circom

and ZoKrates to verify the corresponding proofs. As the graphic highlights, the Circom smart contract

appears to be considerably cheaper than the one produced by ZoKrates.

5.1.2. Sudoku solution

Sudoku [28] is a popular puzzle game structured as a square 𝑛×𝑛 grid, with 𝑛 = 9 in the most common

configuration of the game. The objective of the puzzle is to fill the grid using numbers from 1 to 𝑛, such

that every number is present only once in every every row, column and

√
𝑛×

√
𝑛 square. The starting

grid is filled only partially.

In our tests, the prover wants to generate a proof assessing the knowledge of a valid solution for a

certain Sudoku grid, maintaining such solution hidden to the verifier. Hence, the witness is the Sudoku

solution, while the public input is the starting grid.

The goal of this experiment was to evaluate how the libraries implement the most used syntactic

constructs common to programming languages, i.e., conditional blocks (𝑖𝑓/𝑒𝑙𝑠𝑒) and cycles (𝑓𝑜𝑟/𝑤ℎ𝑖𝑙𝑒).

For our experiments, we evaluated 5 different instances of the Sudoku grid, progressively increasing

the grid size. More specifically, we considered 𝑛 = 4, 9, 16, 25, 36.

Table 3 summarizes our results about the size of the files produces by the proof generation process

for the different Sudoku grids by both libraries. As shown by the table, the circuit files sizes and the

proving keys sizes are the metrics where Circom and Zokrates differ the most. For instance, in case of a

grid of 36× 36, Circom’s Circuit file (R1CS file) has a size of 17,3 MB, while the ZoKrates file has size

1,59 GB. The difference is also very pronounced on the proving key size, where the Circom proving key

is 57 MB while the corresponding ZoKrates proving key occupies 2,64 GB.

Sudoku
grid size

Circuit file
size (MB)

Proof size
(MB)

Proving key
size (MB)

Verification
key size (MB)

4× 4
Circom 0,006 0,004 0,733 0,008

ZoKrates 3,6 0,004 7,4 0,004

9× 9
Circom 1,1 0,004 4,3 0,02

ZoKrates 23,3 0,008 17,6 0,016

16× 16
Circom 3,4 0,004 11 0,053

ZoKrates 109,6 0,02 183 0,045

25× 25
Circom 8,3 0,004 27 0,119

ZoKrates 453 0,047 732,6 0,104

36× 36
Circom 17,3 0,004 57 0,242

ZoKrates 1.590 0,098 2.640 0,217

Table 3
Storage occupation of Sudoku proof and verification components (in MB)

Figure 4: Deploy costs of the Sudoku solver verifier smart contract

Figure 4 shows the cost to deploy the verifier smart contracts generated by Circom and ZoKrates.

The first thing to notice is that for big grids the libraries have issues in generating a smart contract

to verify the proof of knowledge. This is because Ethereum imposes 24.576 bytes as a maximum size

for a smart contract file; a limit that is exceeded by the Circom smart contracts for the 25 × 25 and

36× 36 grids and by ZoKrates contracts for the 36× 36 grid, resulting in an exception during the smart

contract generation thus making not possible to deploy the corresponding smart contract. For instance,

the 36× 36 Sudoku configuration requires two 36× 36 grids (one for the starting grid and one as the

solution) in input, namely 2.592 integers. When the smart contracts were deployable for both Circom

and Zokrates, the deployment cost of the ones generated by Circom is always considerably cheaper.

The same trend is confirmed on the execution costs, i.e., the costs for executing the smart contract to

verify the proof on the blockchain, as shown in Figure 5. Hence, the execution of the Circom-produced

code results cheaper than the execution of the Zokrates one.

Figure 5: Execution costs of the Sudoku solver verifier smart contract

5.1.3. Hamiltonian cycle

Given a(n undirected) graph, an Hamiltonian cycle [29] is a closed path in the graph that visit every

node only once. Hamiltonian cycles are applied in several disciplines, such as computer graphics,

genomic mapping, electronic circuit design and more others.

In our tests, a prover generates a proof to convince a verifier that they know a valid Hamiltonian

cycle (which will be the witness) for a given graph (which is instead the public input). We defined this

final scenario to test the two libraries in a more realistic setting, where both the primitives constructions

of the language and the calls to external libraries are executed in the same program, making it possible

to evaluate the two libraries in their entirety.

The graphs for this experiment were built in such a way that, for any two nodes 𝑖 and 𝑗, the edge

(𝑖, 𝑗) exists with probability 𝑝 = 0, 5 (then, the produced graphs were adapted accordingly, so that an

Hamiltonian cycle always exists). We considered graphs consisting of 5, 8, 10, 15 and 50 nodes. For

conducting our experiments, we passed as inputs the adjacency matrices of the graphs (for an 𝑛-node

graph, its adjacency matrix has 𝑛 × 𝑛 entries) and the (solution) hamiltonian cycles as arrays of 𝑛
elements.

Table 4 illustrates the storage occupation resulting from the implementation of the proving workflow

for each of the mentioned scenarios. This results follows the trend observed by in the previous

experiments, with Circom implementation producing smaller circuit files and proving keys for every

scenario instance. More specifically, the size of the Circom circuits increases with the size of the graph,

and for 50 nodes, the Circom circuit file size is 401 KB, while for ZoKrates the file is about 100 MB.

Regarding proving key, its size increases with the dimension of the graph as well, and we have that,

for a graph of 50 nodes, the Circom implementation proving key size is 3,2 MB, against the 106 MB

of the ZoKrates one. Also Proofs and Verification Keys sizes increase with the graph dimension, and

the former are lower in the Circom implementation, while the latter are slightly lower in the Zokrates

implementation. However, the differences in size for Proofs and Verification Keys are considerably less

significant than the ones for Circuit Files and Proving Keys.

Figure 6 and Figure 7 both highlight a cost behaviour similar to what happens in the Sudoku scenario:

for Circom, smart contract deployment and execution costs are smaller than Zokrates’ ones. Also, there

is a deployment failure for the 50-node graph verifier contract: it would require to process a total of

2.550 inputs (2.500 for the 50 × 50 adjacency matrix and 50 for the solution), and the contract size

Graph
nodes

Circuit file
size (MB)

Proof size
(MB)

Proving key
size (MB)

Verification
key size (MB)

5
Circom 0,033 0,004 0,131 0,008

ZoKrates 1,2 0,004 2,4 0,008

8
Circom 0,053 0,004 0,262 0,016

ZoKrates 2,4 0,008 4,6 0,012

10
Circom 0,066 0,004 0,262 0,025

ZoKrates 3,2 0,008 5,9 0,018

15
Circom 0,139 0,004 0,467 0,045

ZoKrates 6,3 0,02 11,6 0,041

50
Circom 0,401 0,004 3,2 0,463

ZoKrates 100,7 0,188 160,6 0,411

Table 4
Storage occupation of Hamiltonian cycle knowledge proof and verification components (in MB)

Figure 6: Deploy costs for the Hamiltonian cycle calculation smart contract verifier

would exceed the maximum size supoported for a single smart contract (like in the 36× 36 Sudoku

scenario).

6. Discussion

In this section, we discuss the insights provided by the experimental results presented in the previous

section. From a quantitative point of view, the results show that the dimension of the circuit file and

the proving key size grow with the size of the input instances considered. This growth is steady for

both Circom and ZoKrates in the scenarios we considered; even though for small inputs Circom and

ZoKrates achieve comparable performances (in terms of circuit file size and proving key size), for bigger

inputs Circom outperforms ZoKrates since it manages to keep the files size lower. For instance, in our

experiments the size of the Circuit files produced by Circom is in the order of tens of MB, while for

Figure 7: Execution costs for the Hamiltonian cycle calculation smart contract verifier

ZoKrates the size of the Circuit files sometimes reach the order of GB. This suggests that the Circom

library performs better when the input size grows significantly, making it more suitable for managing

situations where off-chain storage occupation matters, for instance when IoT devices, that usually have

limited storage capabilities, are used.

Regarding the actual Proof size and the Verification Key size, in our experiments both Circom and

ZoKrates manage to keep the storage occupation low (under 1 MB) without a library that clearly

outperforms the other: we argue that this would not have been relevant even if this was the case since

the storage occupation of the proof and the verification key files is negligible compared with the storage

occupation of the Circuit and the Proving Key files.

For what concerns the on-chain costs, we observe a similar behavior, with Circom smart contracts

generally cheaper than the ZoKrates ones. However, as highlighted by the Sudoku solution scenario,

ZoKrates optimizes better the smart contract generation, since it managed to compile the contract to

handle 25× 25 Sudoku grids while Circom did not.

Although the quantitative experimental results show that Circom performs better than ZoKrates,

the latter turns out to be more developer friendly, having a higher-level programming language if we

compare it with the Circom one. We argue that a higher-level (and thus, easier to use) programming

language not only provides a (non-negligible) advantage in terms of development experience, but helps

to prevent bugs and inefficiencies that could possibly come up when implementing dApps that perform

non-trivial tasks.

Figure 8 gives a view about the coding experience using the Circom and ZoKrates languages, con-

sidering only the lines of code needed to define the circuits. We did not take into account the smart

contracts code because it is generated automatically, and then not coded by the developer. Considering

the implementation of the three analyzed scenarios, the figures shows that coding in ZoKrates requires

a number of effective lines of code sensibly lower than coding in Circom. This is particularly appreciable

on the Sudoku solution case, where ZoKrates requires less than half lines of code with respect of the

counterpart Circom program to achieve the same result (80 for the ZoKrates program, 193 for the

Circom one). Furthermore, we noticed that Circom codes need of import several external modules to

perform operations, such as comparisons between values. On the other hand, ZoKrates appears to be

more independent in this sense, not requiring any import in none of the studied scenarios.

Additionally, ZoKrates manages the entire proof generation workflow without any crucial external

dependency (such as snarkJS, that is necessary for Circom’s workflow instead), and that could lead to

Figure 8: Effective lines of code needed to code the scenarios using the two libraries

an easier adoption of the tool. In the light of these considerations, the choice of one library instead of

the other has to be weighted to several factors, such as developer comfort and skills, available off-chain

storage, problem complexity.

7. Conclusions

In this paper we propose a comparative study to benchmark the performances of Circom and ZoKrates,

two among the major libraries used to generate zkSNARK proofs in blockchain related applications and

to verify them on-chain. The comparison was performed considering several scenarios of increasing

complexity, in which a prover holds a secret witness and aims to prove the knowledge about such

witness without disclosing it to the verifier. We have evaluated the entire workflow, from the proof

generation to its verification. The proofs are verified by a smart contract generated by the libraries.

The witnesses to prove the knowledge of were: i) to be older than a certain age threshold, ii) a valid

solution for a Sudoku grid, iii) a valid hamiltonian cycle for a graph. We implemented several instances

for each of these scenarios, increasing the input size, and consequently the computational charge, at

each stage. Finally, we evaluated the performances of the two libraries against the mentioned scenario

implementations, collecting measurements about several parameters, in particular the verifier smart

contract gas costs and the storage costs at Layer 2.

Our findings highlight that the proving workflows produced by Circom appears cheaper in both

Layer 2 storage occupation and smart contract costs on every tested scenario. However, even if Circom

appears more performing than ZoKrates on the evaluated scenarios, the coding experience provided

by the ZoKrates language was overall more fluid and produced more readable and compact code, as

showed for example by our analysis of the effective lines of code needed to code the scenarios.

As future works, we plan to enrich the study defining more scenarios involving blockchain related

problem, such as the transaction anonymization or the privacy preserving proof of ownership, or

scenarios in which features like witness succintness is more crucial. We also plan to evaluate more

parameters, such as the time to execute the various workflow steps (proof generation, proof verification,

trusted setup...) and the scalability in terms of gas with respect of executing the same statements on

a classic Layer 1 Ethereum smart contract. Finally, we will consider to include more libraries in the

comparison.

Acknowledgements

This work was partially supported by project SERICS (PE00000014) under the MUR National Recovery

and Resilience Plan funded by the European Union - NextGenerationEU. Additionally, it was partially

funded by Ministero dell’Università e della Ricerca (MUR), issue D.M. 352/2022 “Borse di Dottorato” -

Dottorato di Ricerca di Interesse Nazionale in “Blockchain & Distributed Ledger Technology”, under

the National Recovery and Resilience Plan (NRRP).

References

[1] H. Mayer, zk-snark explained: Basic principles, URL https://blog. coinfabrik. com/wp-

content/uploads/2017/03/zkSNARK-explained_basic_principles. pdf (2016).

[2] M. Petkus, Why and how zk-snark works, CoRR abs/1906.07221 (2019). URL: http://arxiv.org/abs/

1906.07221. arXiv:1906.07221.

[3] D. Di Francesco Maesa, A. Lisi, P. Mori, L. Ricci, G. Boschi, Self sovereign and blockchain based

access control: Supporting attributes privacy with zero knowledge, J. Netw. Comput. Appl. 212

(2023) 103577. doi:10.1016/j.jnca.2022.103577.

[4] F. Vincent C. Hu, David, K. Rick, S. Adam, M. Sandlin, K. Robert, S. Karen, Guide to attribute based

access control (ABAC) definition and considerations, 2014.

[5] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, S. Capkun, On the security

and performance of proof of work blockchains, IACR Cryptol. ePrint Arch. (2016) 555. URL:

http://eprint.iacr.org/2016/555.

[6] C. T. Nguyen, D. T. Hoang, D. N. Nguyen, D. Niyato, H. T. Nguyen, E. Dutkiewicz, Proof-of-

stake consensus mechanisms for future blockchain networks: Fundamentals, applications and

opportunities, IEEE Access 7 (2019) 85727–85745. doi:10.1109/ACCESS.2019.2925010.

[7] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, Technical Report, 2009.

[8] G. Wood, Ethereum: A secure decentralised generalised transaction ledger, Ethereum project

yellow paper 151 (2014) 1–32.

[9] S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proof systems, SIAM

Journal on Computing 18 (1989) 186–208. doi:https://doi.org/10.1137/0218012.

[10] J. Quisquater, M. Quisquater, M. Quisquater, M. Quisquater, L. C. Guillou, M. A. Guillou, G. Guil-

lou, A. Guillou, G. Guillou, S. Guillou, T. A. Berson, How to explain zero-knowledge pro-

tocols to your children, in: G. Brassard (Ed.), Advances in Cryptology - CRYPTO ’89, 9th

Annual International Cryptology Conference, Santa Barbara, California, USA, August 20-24,

1989, Proceedings, volume 435 of Lecture Notes in Computer Science, Springer, 1989, pp. 628–631.

doi:10.1007/0-387-34805-0_60.

[11] M. Bellare, O. Goldreich, On defining proofs of knowledge, in: Advances in Cryptology - CRYPTO

’92, 12th Annual International Cryptology Conference, Santa Barbara, California, USA, August

16-20, 1992, Proceedings, volume 740 of Lecture Notes in Computer Science, Springer, 1992, pp.

390–420. doi:10.1007/3-540-48071-4_28.

[12] T. Chen, H. Lu, T. Kunpittaya, A. Luo, A review of zk-snarks, 2023. arXiv:2202.06877.

[13] Zcash and zksnarks, "https://z.cash/technology/zksnarks/" [Online, accessed on 23 April 2024],

2016.

[14] Zcash - trusted setup ceremony, "https://z.cash/technology/paramgen/" [Online, accessed on 23

April 2024], 2016.

[15] S. Simunic, D. Bernaca, K. Lenac, Verifiable computing applications in blockchain, IEEE Access 9

(2021) 156729–156745. doi:10.1109/ACCESS.2021.3129314.

[16] J. Partala, T. H. Nguyen, S. Pirttikangas, Non-interactive zero-knowledge for blockchain: A survey,

IEEE Access 8 (2020) 227945–227961. doi:10.1109/ACCESS.2020.3046025.

[17] A. E. Kosba, A. Miller, E. Shi, Z. Wen, C. Papamanthou, Hawk: The blockchain model of cryp-

tography and privacy-preserving smart contracts, in: IEEE Symposium on Security and Pri-

http://arxiv.org/abs/1906.07221
http://arxiv.org/abs/1906.07221
http://arxiv.org/abs/1906.07221
http://dx.doi.org/10.1016/j.jnca.2022.103577
http://eprint.iacr.org/2016/555
http://dx.doi.org/10.1109/ACCESS.2019.2925010
http://dx.doi.org/https://doi.org/10.1137/0218012
http://dx.doi.org/10.1007/0-387-34805-0_60
http://dx.doi.org/10.1007/3-540-48071-4_28
http://arxiv.org/abs/2202.06877
https://z.cash/technology/zksnarks/
https://z.cash/technology/paramgen/
http://dx.doi.org/10.1109/ACCESS.2021.3129314
http://dx.doi.org/10.1109/ACCESS.2020.3046025

vacy, SP 2016, San Jose, CA, USA, May 22-26, 2016, IEEE Computer Society, 2016, pp. 839–858.

doi:10.1109/SP.2016.55.

[18] L. T. Thibault, T. Sarry, A. S. Hafid, Blockchain scaling using rollups: A comprehensive survey,

IEEE Access 10 (2022) 93039–93054. doi:10.1109/ACCESS.2022.3200051.

[19] J. Ernstberger, S. Chaliasos, G. Kadianakis, S. Steinhorst, P. Jovanovic, A. Gervais, B. Livshits,

M. Orrù, zk-bench: A toolset for comparative evaluation and performance benchmarking of snarks,

IACR Cryptol. ePrint Arch. (2023) 1503. URL: https://eprint.iacr.org/2023/1503.

[20] K. Baghery, A. Mertens, M. Sedaghat, Benchmarking the setup of updatable zk-snarks, IACR

Cryptol. ePrint Arch. (2023) 1161. URL: https://eprint.iacr.org/2023/1161.

[21] C. Steidtmann, S. Gollapudi, Benchmarking zk-circuits in circom, IACR Cryptol. ePrint Arch.

(2023) 681. URL: https://eprint.iacr.org/2023/681.

[22] Zk-snark hash benchmark, https://github.com/colinnielsen/SNARK-hash-benchmark/, 2022.

[23] M. Bellés-Muñoz, M. Isabel, J. L. Muñoz-Tapia, A. Rubio, J. B. Melé, Circom: A circuit description

language for building zero-knowledge applications, IEEE Trans. Dependable Secur. Comput. 20

(2023) 4733–4751. doi:10.1109/TDSC.2022.3232813.

[24] V. Nikolaenko, S. Ragsdale, J. Bonneau, D. Boneh, Powers-of-tau to the people: Decentralizing

setup ceremonies, in: International Conference on Applied Cryptography and Network Security,

Springer, 2024, pp. 105–134.

[25] J. Eberhardt, S. Tai, Zokrates - scalable privacy-preserving off-chain computations, in: IEEE

International Conference on Internet of Things (iThings) and IEEE Green Computing and Commu-

nications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart

Data (SmartData), iThings/GreenCom/CPSCom/SmartData 2018, Halifax, NS, Canada, July 30 -

August 3, 2018, IEEE, 2018, pp. 1084–1091. doi:10.1109/Cybermatics_2018.2018.00199.

[26] J. Groth, On the size of pairing-based non-interactive arguments, IACR Cryptol. ePrint Arch.

(2016) 260. URL: http://eprint.iacr.org/2016/260.

[27] K. George, The mathematical mechanics behind the groth16 zero-knowledge proving protocol

(2022).

[28] B. Felgenhauer, F. Jarvis, Mathematics of sudoku i, Mathematical Spectrum 39 (2006) 15–22.

[29] M. Claverol, A. G. Olaverri, D. Garijo, C. Seara, J. Tejel, On hamiltonian alternating cycles and

paths, Comput. Geom. 68 (2018) 146–166. doi:10.1016/J.COMGEO.2017.05.009.

http://dx.doi.org/10.1109/SP.2016.55
http://dx.doi.org/10.1109/ACCESS.2022.3200051
https://eprint.iacr.org/2023/1503
https://eprint.iacr.org/2023/1161
https://eprint.iacr.org/2023/681
https://github.com/colinnielsen/SNARK-hash-benchmark/
http://dx.doi.org/10.1109/TDSC.2022.3232813
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00199
http://eprint.iacr.org/2016/260
http://dx.doi.org/10.1016/J.COMGEO.2017.05.009

	1 Introduction
	2 Background
	2.1 Blockchain technologies
	2.2 Zero Knowledge proofs
	2.2.1 zkSNARKs

	3 Related works
	4 Implementing zkSNARK protocols on Ethereum: Circom and ZoKrates
	4.1 Circom
	4.2 ZoKrates

	5 Libraries comparison
	5.1 Scenarios and experimental results
	5.1.1 Age evaluation
	5.1.2 Sudoku solution
	5.1.3 Hamiltonian cycle

	6 Discussion
	7 Conclusions

