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Abstract
Waku is a privacy-preserving, generalized, and decentralized messaging protocol suite. Waku uses
GossipSub for message routing and Rate Limiting Nullifiers (RLN) for spam protection. GossipSub
ensures fast and reliable peer-to-peer message delivery in a permissionless environment, while RLN
enforces a common publishing rate limit using zero-knowledge proofs.

This paper presents a practical evaluation of message propagation latency in Waku. First, we estimate
latencies analytically, building a simple mathematical model for latency under varying conditions.
Second, we run a large-scale single-host simulation with 1000 nodes. Third, we set up a multi-host Waku
deployment using five nodes in different locations across the world. Finally, we compare our analytical
estimations to the results of the simulation and the real-world measurement.

The experimental results are in line with our theoretical model. Under realistic assumptions, medium-
sized messages (25 KB) are delivered within 1 second. We conclude that Waku can achieve satisfactory
latency for typical use cases, such as decentralized messengers, while providing scalability and anonymity.
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1. Introduction

Peer-to-peer (P2P) protocols allow for fast and resilient data exchange. Their applications
include data dissemination in blockchains and decentralized social networks. The goal of P2P
protocol design is to navigate the trade-offs between speed, reliability, efficiency, security, and
privacy.

Flooding and gossip are the two main approaches to message propagation in P2P networks.
In flooding, nodes push messages to (a subset of) their neighbors eagerly, which ensures fast
and reliable propagation at the cost of redundant bandwidth usage (bandwidth amplification).
In gossip, nodes announce messages to their neighbors, and the full message is relayed only if
the neighbor expresses interest in it. Gossip is more complex than flooding but more efficient in
terms of bandwidth.

Security and privacy are especially important considerations for P2P protocols. In a permis-
sionless network, an adversary can set up many nodes and launch a coordinated Sybil attack,
such as isolating a victim from the rest of the network (eclipse attack), or overwhelming the
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network with unwanted (spam) messages causing denial of service (DoS). Centralized mitigation
methods, e.g. linking users’ accounts to personally identifiable information such as a phone
numbers, are harmful for privacy. Although proof-of-work was originally proposed as a spam
countermeasure [1], it has since proved impractical due to computational requirements for end
users’ devices.

Publish-subscribe (PubSub) is a popular design pattern for P2P networks. Messages in a
PubSub network are classified by topic. Nodes only receive messages from topics they are
subscribed to.

Waku is a protocol suite for generalized, permissionless, and privacy-preserving P2P messag-
ing. Waku Relay is the main Waku routing protocol based on GossipSub, a P2P PubSub protocol
that combines flooding and gossip. Additionally, Waku Relay offers zero-knowledge-based spam
protection, peer discovery, and sharding. Waku light protocols (Store, Filter, and Lightpush)
allow resource-restricted devices to interact with Waku Relay nodes.

Rate Limiting Nullifiers (RLN) is a novel approach to spam protection for Waku Relay [2]. Let
us refer to Waku nodes that wish to publish messages as publishers. RLN enforces a common
rate limit upon every publisher using smart contracts and zero-knowledge proofs. The publisher
registers on-chain, and provides a proof of their valid membership alongside each message
they broadcast. Relaying nodes verify the proof before forwarding the message. Publishers that
exceed the rate limit get disconnected from the network.

Low latency is important for user-facing applications, such as messengers. However, RLN
proof verification at every node increases the latency in Waku.

Our contributions In this work, we aim to quantify the latency of Waku in realistic settings.
We estimate the expected latency based on the assumptions regarding network delays, available
bandwidth, and benchmarks for cryptographic operations that routing nodes perform locally.
To validate our estimations, we run a single-host simulation and a multi-host measurement. In
a single-host simulation with 1000 nodes, we obtain the distribution of message latencies. We
then compare simulation results to real latencies measured using five Waku nodes deployed in
different geographic regions.

Our results indicate that the overall latency is satisfactory for a user-facing application. Under
realistic assumptions about node count and connectivity, messages of 25 KB or less get delivered
within 1 second. We conclude that RLN is a practical spam countermeasure for a scalable,
permissionless, decentralized messaging network.

The rest of this paper is structured as follows. In Section 2, we provide the necessary
background on P2P networks, GossipSub, Waku, and RLN. In Section 3, we introduce the
analytical model for latency in Waku. We describe our experimental methodology in Section 4.
We present and discuss our results in Section 5, review related work in Section 6, outline avenues
for future work in Section 7, and summarize the key findings in Section 8.



2. Background

2.1. GossipSub

GossipSub [3] is a P2P protocol that combines PubSub and Gossip. It was initially developed
with the blockchain use case in mind (namely, for Ethereum 2.0 and Filecoin). GossipSub nodes
may be connected in one of two ways.

• A gossip connection is only used to announce the messages that a node has recently
seen to its neighbor, who may then selectively request full messages (the "lazy pull"
approach).

• A mesh connection is used to relay full messages (the "eager push" approach). Nodes
may also receive and send gossip announcements on mesh connections. To avoid excessive
bandwidth consumption, nodes only maintain a handful of mesh connections (typically
between 𝐷𝑙𝑜𝑤 = 4 and 𝐷ℎ𝑖𝑔ℎ = 12).

A node can graft a connection, upgrading it from gossip to mesh, or prune a connection,
downgrading it from mesh to gossip-only.

GossipSub nodes assign dynamic reputation scores to their neighbors, incentivizing good
behavior. Multiple parameters are considered in score calculation [4], such as the time in
the mesh and the number of invalid messages relayed. Connections to low-score peers are
eventually dropped, whereas connections to high-score peers are kept.

GossipSub has high guarantees of delivery in adversarial environments, while having a
reasonable amplification factor and latency [3].

2.2. TCP

We assume TCP as the underlying transport protocol. TCP flow control may affect the latency of
message transmission. The TCP window size is negotiated in the early stages of a TCP transfer,
and limits the amount of bytes a sender can send before waiting for an acknowledgement from
the receiver. This implies that the round-trip time (𝑅𝑇𝑇 ) between the nodes affects the latency.
The maximum TCP window size is 65 KB, although RFC 1323 [5] introduces window scaling to
well beyond this limit. We assume that all nodes implement this extension, as is the standard in
all modern operating systems. Furthermore, data is transferred in individual segments each
with a maximum size derived from the underlying data link layer maximum transmission unit
(MTU) size. MTU size varies, but is typically 1.5 KB on Ethernet interfaces. Since each segment
adds a small header, which increases the bandwidth overhead, MTU size may also affect latency.
However, for small messages this effect is negligible. For large messages, TCP configuration
and features such as MTU size, could become significant. These secondary effects are nontrivial
to model and considered out of scope.

2.3. Zero-knowledge proofs

Zero-knowledge proofs (ZKPs) are cryptographic protocols enabling one party (the prover)
to convince another (the verifier) of a statement’s truth without revealing additional informa-



tion [6, 7]. zkSNARKs, a subset of ZKPs1, are additionally characterized by succinctness (the
proofs are small) and non-interactivity (besides the prover sending the proof to the verifier,
no communication between the parties is needed). The Ethereum Virtual Machine facilitates
zkSNARK verification within smart contract execution [8].

2.4. Spam protection in P2P networks

Without countermeasures, attacker can abuse the resources of a permissionless P2P network.
Early P2P file-sharing networks relied on reputation for rate limiting. Peers would keep score
of their neighbor’s behavior and allocate their resources (such as bandwidth) accordingly.

Proof-of-work (PoW), later used in Bitcoin and other blockchains, was initially invented as
a spam countermeasure [1]. A notable advantage of PoW-based solutions, at least in theory,
is stronger privacy protection, as peers do not need to be identified. However, PoW as a rate
limiting tool in general-purpose messaging networks has not gained popularity (a notable
attempt was Whisper [9]). The key challenge turned out to be setting the PoW puzzle difficulty
high enough to deter attackers, but low enough to keep the network usable on resource-restricted
devices.

P2P-protocols that underlie blockchains, such as libp2p in Ethereum, protect from spam
with a combination of peer scoring and a degree of monetary protection stemming from the
financial nature of the messages being broadcast. In particular, relaying nodes ensure that
transactions pay a minimum fee required by the protocol, which burdens a potential spammer.

2.5. Waku

Waku is a suite of generalized messaging protocols that follows the GossipSub model, offers
ZK-based privacy-preserving spam protection, and supports resource-restricted devices via
light protocols. Waku is built according to the following design principles:

• privacy-preserving: avoid linking Waku users’ identities to any sensitive information
such as on-chain identity or IP address, thus providing transport privacy;

• decentralized: remove any central point of failure by using P2P architecture and encour-
aging a mesh topology;

• permissionless: allow anyone to join the network using open-source software, possibly
using a resource-restricted device;

• generalized: support multiple use cases with unicast or multicast communication pat-
terns.

Waku is built on top of libp2p [10], a modular networking stack for P2P protocols. In
particular, Waku Relay, the backbone P2P protocol in the Waku suite, is built on top of libp2p’s
GossipSub implementation. The Waku reference implementation, called nwaku [11], is written
in Nim, a compiled high-level programming language. Other implementations include go-
waku [12] in Go and js-waku [13] in Javascript. Waku is used as the backend for Status [14], a
messaging app. The Waku Network (TWN) is a deployment of the Waku suite of protocols that
launched in late 2023 [15].
1Strictly speaking, zkSNARKs function as arguments rather than proofs of knowledge [6].



2.5.1. Rate Limiting Nullifiers

Rate Limiting Nullifier (RLN) is a zero-knowledge gadget used in Waku [2] for privacy-preserving
spam protection. RLN operates as follows:

Publisher registration The publisher generates the private key 𝑠𝑘 and derives the corre-
sponding commitment: 𝑐 = 𝐻(𝑠𝑘). 𝐻 is a cryptographic hash function (namely, Poseidon [16]).
The publisher can obtain an RLN membership by registering its commitment 𝑐 with an on-chain
smart contract. The registration is permissionless. The contract stores a list of all valid commit-
ments. Holding a valid membership entails knowing the secret key 𝑠𝑘 such that its commitment
𝑐 is part of the list of valid commitments.

Each registration incurs on-chain transaction fee. The registration requirement thus deters
attackers from easily creating multiple (Sybil) identities. In the original RLN proposal [2], regis-
tration also involves putting down a deposit that is slashed in case of publisher’s misbehavior.

Prerequisites for relaying nodes All Waku nodes are supposed to relay messages. Each
node must be in sync with the current list of valid commitments. Synchronization is done
through RPC calls to either an Ethereum RPC Provider (Infura, Alchemy, etc.) or a node’s own
Ethereum Execution Client. Each node locally constructs a Merkle tree 𝑇 of all currently valid
commitments. The tree must be updated when necessary according to on-chain events.

Message propagation An RLN identifier 𝑟𝑙𝑛_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 uniquely identifies an application
and prevents cross-application replay attacks. The 𝑒𝑝𝑜𝑐ℎ is a value derived from or equal to the
current UNIX timestamp divided by the length of time over which we want to rate limit. We
define2 an external nullifier ∅ as follows:

∅ = 𝐻(𝑒𝑝𝑜𝑐ℎ, 𝑟𝑙𝑛_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟)

We define an internal nullifier 𝜑 as follows:

𝜑 = 𝐻(𝑠𝑘, ∅)

To publish a message, the publisher generates a proof 𝜋 of holding a valid membership
for the current epoch. The zero-knowledge property of zkSNARKs ensures that 𝜋 conceals
the publisher’s identity beyond confirming their valid membership. The publisher attaches 𝜋,
internal nullifier 𝜑, 𝑒𝑝𝑜𝑐ℎ, 𝑟𝑙𝑛_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟, and the Merkle root 𝜏 of tree 𝑇 to the message.

Enforcing the rate limit We define the maximum epoch gap 𝑔 as the maximum allowed gap
between the relaying node’s internal clock and the epoch for which a proof for an incoming
message was generated. Currently, 𝑔 is set to 20 s.

Each node maintains a set of nullifiers (𝜑) of messages relayed within the last 𝑔 seconds. A
message is considered valid if:

2Our definition of ∅ differs from the original definition [2] in that we add the RLN identifier to support multiple
applications running on the same Waku network deployment.



• its proof 𝜋 proves that the publisher holds a valid membership;
• no other messages within the last 𝑔 seconds had the same nullifier 𝜑;
• the gap between the epoch used for proof generation and the node’s internal clock does

not exceed 𝑔.

Only valid messages are forwarded. Nodes that relay invalid messages have their GossipSub
scores lowered. In particular, unsuccessful validation affects the 𝑃4 score component ("Invalid
Messages for a topic" in GossipSub terms [4]). Eventually, the violating node is isolated from the
network. Note that the violating node is not necessarily the original publisher. This mechanism
discourages forwarding invalid messages, as a node that does so will itself be punished.

In summary, RLN prevents malicious actors from overwhelming the network with messages.
At the same time, RLN respects the privacy of publishers, as they only have to prove that they
hold a valid membership without specifying any further details.

Note that the current nwaku implementation does not yet support economic punishment of
malicious publishers, which was described in the original RLN paper [2].

3. Analytical model for propagation latency

We define latency as the time between the publisher’s expressed intention3 to publish a message
and the receiver node receiving it.

For a given message propagation, the total latency is the sum of individual delays along the
shortest path from the publisher to the receiver. Therefore, the total path latency depends on
individual hop-level delays and on the number of hops. From a network-wide perspective, the
distribution of latencies depends on the number of nodes in the network, their degrees, and the
network topology.

3.1. Latency components on a given path

Let us denote the number of the nodes in the network as 𝑁 , and the degree of each node as
𝐷 (we assume that the network is a regular graph). The overall latency 𝐿 for a propagation
path can be divided into three components: proof generation time at the publishing node,
transmission latency, and proof validation at each relaying node (see Figure 1 as an illustration
for 𝐷 = 2 and 𝑁 = 8). Let us consider the three latency components in turn.

3.1.1. Proof generation

The publisher generates one proof 𝜋 of valid RLN membership per message sent. 𝐿𝑖
𝑔 denotes

the time it takes the publisher 𝑖 to generate 𝜋. Proof generation time depends on the hardware
platform (see Table 1 for benchmarks).

After generating 𝜋, the publisher may optionally verify the proof locally before broadcasting
the message. This might be useful, for instance, if the publisher outsources proof generation to
a third party and wants to independently check that the proof is valid. In our calculations, we
do not account for this optional step.

3In other words, latency includes preparatory steps before the message is relayed, such as generating the RLN proof.



Figure 1: An example of a message propagation in a network with 𝑁 = 8 and 𝐷 = 2, with latency
components indicated. The message is relayed from 𝑃1 to 𝑃8 via four hops.

Platform Generation (ms) Verification (ms)
MacBook M1 Pro 16GB 85.7 2.7
Bare Metal 256GB AMD EPYC 7502P 32-Core 171.6 7.9
Digital Ocean 8GB/4CPU 276.3 4.5
Digital Ocean 2GB/2CPU 329.5 4.4
Raspberry Pi 4B 4GB 766.8 18.7

Table 1
Benchmarks for RLN proof generation and verification times for nwaku [17] on various platforms (the
platform we used in the multi-host measurement described in Section 4.2 is indicated in bold).

3.1.2. Message transmission

𝐿𝑖→𝑗
𝑡 denotes the message transmission time from node 𝑖 to its neighboring node 𝑗. This time

depends on the message size, the available bandwidth between the nodes, and the underlying
transport protocol (TCP assumed).

We discard the effect of TCP on latency (see Section 2.2), under the assumption that messages
are small, no retransmissions occur, the connection handshake was already established, and the
flow control is already adapted between the neighboring nodes. Therefore, once the neighboring
nodes have adapted their TCP window size and window scaling, the transmission time 𝐿ℎ

𝑡 for
small messages (such as under 100 KB) should be close to 𝑅𝑇𝑇/2 in theory.

3.1.3. Message validation

𝐿𝑖
𝑣 denotes the validation time at a relaying node 𝑃𝑖. Remember that every node validates every

incoming message before forwarding it. Validation involves multiple steps, such as decoding
and RLN proof verification, which is the most resource-consuming step. Messages are cached
to avoid duplicate validation. We have performed proof verification benchmarks on different
platforms (see Table 1 for results and [17] for methodology).



3.2. Analytical formula for latency

With all the latency contributions from Sections 3.1.1, 3.1.2 and 3.1.3, we can model the total
latency with Equation 1. 𝐿𝑔 and 𝐿𝑣 can be taken from Table 1 depending on the platform.
Note that message decoding and other non-significant time contributions are not considered.
𝑖 denotes the index of a node in the path (𝑖 = 0 is the publisher, 𝑖 = ℎ is the receiver). ℎ
can take any value in [ℎ𝑚𝑖𝑛, ℎ𝑚𝑎𝑥], where ℎ𝑚𝑖𝑛 = 1 can be used for the best-case latency for
neighboring nodes.

𝐿 = 𝐿0
𝑔 +

ℎ∑︁
𝑖=1

(𝐿
(𝑖−1)→𝑖
𝑡 + 𝐿𝑖

𝑣) (1)

3.3. Bandwidth amplification

The bandwidth amplification factor is the ratio of total bandwidth utilized to relay a message at
each node to the size of that message. Since in Waku Relay each message is routed exactly once
on each mesh connection, the amplification factor is roughly equal4 to the mesh degree 𝐷 at
each node. Increasing 𝐷 increases bandwidth amplification (independent of 𝑁 ) and decreases
latency. The effect of 𝐷 on latency lasts only up to a certain threshold for any given 𝑁 (Figure 2).
We observe that while higher values of 𝐷 allow for faster message dissemination, it only makes
sense to increase 𝐷 up to a certain threshold to avoid useless bandwidth amplification. For that
reason, in real Waku networks, 𝐷 is limited to 𝐷ℎ𝑖𝑔ℎ = 12.

3.4. Estimating the number of hops

Waku Relay is based on GossipSub, which strongly enforces same-degree topology. Peer
discovery is randomized, and nodes try to maintain the degree of 𝐷 ∈ [𝐷𝑚𝑖𝑛, 𝐷𝑚𝑎𝑥]. These
protocol properties allow us to make a reasonable assumption that the network topology tends
towards a mesh topology rather than hub-and-spoke5.

As an simplified model, consider a network with a constant node degree 𝐷 and 𝑁 nodes
in total. Let us denote as 𝑁ℎ the number of nodes that have received the message after ℎ
propagation steps. We can derive ℎ𝑚𝑎𝑥, which is a lower bound on ℎ for given values of 𝑁 and
𝐷 that is sufficient for all nodes to receive a message.

Let us consider two cases: 𝐷 = 2 and 𝐷 > 2. The edge case where 𝐷 = 2 implies a circle
topology, where a message is only relayed to two new nodes on each propagation step. In
other words, propagation is described by an arithmetic rather than geometric sequence. After ℎ
propagation steps, 𝑁ℎ = 1 + 2ℎ nodes know the message. Therefore, ℎ𝑚𝑎𝑥 =

⌈︀
𝑁−1
2

⌉︀
. Now,

let’s consider the general case of 𝐷 > 2. Before the first step, only one node (the publisher)
knows the message. After the first step, all 𝐷 neighbors of the publisher receive the message.
For all subsequent steps, the process can be characterized by a geometric sequence:

4Not exactly equal due to additional increase in control message frequency.
5In hub-and-spoke, most nodes are only connected to a handful of well-connected hubs, which is undesirable for
decentralization and censorship resistance.



Figure 2: The best-topology maximal path length ℎ𝑚𝑎𝑥 and bandwidth amplification for various values
of of node degree 𝐷, calculated using Equation 2.

𝑁ℎ =

{︃
𝐷 + 1 if ℎ = 1

𝐷 × (𝐷 − 1)ℎ−1 + 1 if ℎ > 1

Applying the formula for the partial sum of a geometric sequence, we derive Equation 2:

ℎ𝑚𝑎𝑥 =
⌈︁ log (︁ (𝑁−1)(𝐷−2)

𝐷 + 1
)︁

log(𝐷 − 1)

⌉︁
(2)

The best-case maximum number of hops ℎ𝑚𝑎𝑥 is inversely related to bandwidth amplification
(Figure 2). We ignore the case of 𝐷 = 2 in Figure 2 because it is unrealistic for Waku in
practice. Intuitively, higher node degrees lead to faster message propagation but at the same
time increase bandwidth consumption. While this observation holds in practice and in our
subsequent experiments, the exact formula is not necessarily applicable for Waku because
of two reasons. First, Equation 2 concerns the theoretically optimal topology in terms of
propagation efficiency. Second, nodes in Waku have a variable degree, which may lead to
different connectivity properties compared to the simplified model of Equation 2. Keeping these
limitations in mind, we can plug 𝑁 = 1000 and 𝐷 = 6 into Equation 2 and derive ℎ𝑚𝑎𝑥 = 5.

4. Methodology

We estimate latency in Waku using a single-host simulation (Section 4.1) and a multi-host node
deployment in different geographic locations (Section 4.2). The two approaches complement
each other. The single-host simulation allows us to model a large network, while nodes in



different locations allow us to measure the impact of real network conditions. The multi-host
measurements are intended to assess the performance of Waku as a message traverses an
individual path of geographically distributed nodes.

We use nwaku implementation in all experiments and consider message sizes of 2, 25, 100,
and 500 KB. The depth of the Merkle tree 𝑇 is 20 in all experiments, as per the protocol
specification [18]. Deeper Merkle trees support more users and provide stronger anonymity,
but require more computational resources for proof generation and verification. The tree depth
of 20 was chosen as a reasonable trade-off.

4.1. Single-host simulation

We simulate a network of 1000 nodes using Shadow [19], a simulation framework. Each node
tries to maintain 𝐷 = 6 (mesh) connections and is additionally connected to 25 gossip peers.
𝐷 = 6 is the desired node degree in a typical libp2p network6.

The upstream and downstream bandwidth is set to 100 Mbps. The latency is set to 150 ms.
See [21] for the full configuration file.

Ten nodes are designated as publishers. Each of these publishes one message, which is
propagated on all mesh connections. This leads to a total of nearly 10000 message received
events (9990, accounting for the fact that the publishers do not need to receive the messages
they send). Effects from the first two messages are excluded from our measurements, to prevent
latency bias due to TCP window size negotiation.

The Shadow simulation framework does not model CPU time. To account for processing
delays, we manually introduce delays for RLN proof generation and verification, according to
our benchmarks (see Table 2).

In all simulations, four hops were sufficient to deliver a message to all nodes. This result
is lower to what Equation 2 suggests (namely, five hops for 𝑁 = 1000 and 𝐷 = 6). Due to
variable node degrees in our simulations, Equation 2 is not directly applicable, although we
can use it as a sanity check. Simulation results inform our choice of a four-hop path in the
subsequent multi-host measurements (Section 4.2).

4.2. Multi-host measurements

To estimate the effects of real-world communication delays, we deploy 𝑁 = 5 nodes in different
geographic locations. We use Digital Ocean [22] machines with 8 GB RAM and 4 vCPU (virtual
CPUs). The five nodes are statically connected (without peer discovery) in a linear fashion, in
the following order by location: Singapore, Bangalore, San Francisco, New York, and Frankfurt.
Hence, node degrees are 𝐷 = 1 for the sender (Singapore) and receiver (Frankfurt) nodes, and
𝐷 = 2 for the intermediary nodes. Each node can only receive messages on a mesh connection
from the previous node on the path, and relay the message on a mesh connection to the following
node. Messages are therefore forced to travel along this route, eagerly pushed along the path
(no messages are pulled using gossip dissemination).

6See libp2p documentation [20]: "In libp2p’s default implementation the ideal network peering degree is 6 with
anywhere from 4–12 being acceptable."



From
To

Bangalore Frankfurt Singapore San Francisco New York

Bangalore N/A 136 60 220 213
Frankfurt 132 N/A 159 150 87
Singapore 59 160 N/A 176 236
San Francisco 218 146 176 N/A 68
New York 214 90 235 68 N/A

Table 2
Round-time trip (RTT) ping latency (ms) between deployed nodes in various locations.

The goal of this experiment is to measure the latency of a message as it travels through
a path of geographically distributed nodes. The setup is chosen to simulate a path that is
sufficiently long to get to most nodes. We choose the path length of ℎ = 4 for the multi-
host measurement. Based on the single-host simulation results (Section 4.1), we observe that
the majority of messages take no more than four hops to propagate in a mesh network with
𝑁 = 1000 and 𝐷 = 6 (see interpretation of Figure 3). The exact distribution of path lengths
depends not only on the network size and the node degree, but also on topology. We argue
that measuring a path of length four is justified to validate the single-host simulation results in
realistic network conditions. The measurement results can also be extrapolated to longer paths
using the analytical formula for latency (Equation 1).

We measure latency as the difference in the arrival times of a message, according to the local
clock of the relevant nodes. We use NTP [23] to synchronize the clocks on the nodes, reducing
possible errors to a few milliseconds.

We use ping times between the relevant city pairs as the baseline for message latency (see
Table 2). We use the ping protocol implemented in libp2p [10] and the wakucanary tool [24].
Ping is measured as an average of the round-trip time (RTT) of 5 requests done within a
15-minute time span.

5. Results and Discussion

Table 3 shows the multi-host measurements of the proof generation time 𝐿𝑔 , transmission time
𝐿𝑖→𝑗
𝑡 , and validation time 𝐿𝑣 , as discussed in Section 3.
As expected, larger messages cause higher latency. Latencies between geographically closer

nodes are smaller. The transmission time 𝐿𝑡 of small messages is close to half the RTT as
measured in Table 2. For example, the RTT between Bangalore and San Francisco is 220 ms,
and 𝐿𝑆𝑖→𝐵𝑎

𝑡 = 105 ms.
Proof generation time is much larger than validation time (Table 1). Proof generation does

not depend on the message size: proofs are generated on message hashes, and we do not count
hashing as part of proof generation. According to our benchmarks (Table 4), the hashing time
is under 1.2 ms in the worst case, which is insignificant compared to the overall latency.

Validation time 𝐿𝑣 , on the other hand, generally increases with message size. This is explained
by the fact that validation includes not only proof verification but also decoding the message.
The decoding time is linear in the size of the message.



Singapore Bangalore San Francisco New York Frankfurt
𝐿𝑔 𝐿𝑆𝑖→𝐵𝑎

𝑡 𝐿𝐵𝑎
𝑣 𝐿𝐵𝑎→𝑆𝐹

𝑡 𝐿𝑆𝐹
𝑣 𝐿𝑆𝐹→𝑁𝑌

𝑡 𝐿𝑁𝑌
𝑣 𝐿𝑁𝑌→𝐹𝑟

𝑡 𝐿𝐹𝑟
𝑣 𝐿𝑎𝑣𝑔

𝑡𝑜𝑡𝑎𝑙

Msg size (KB)
2 236 38 6 105 7 29 5 42 6 477
25 258 81 10 344 11 100 6 127 7 945
100 223 119 8 755 12 261 9 289 11 1689
500 247 275 16 1017 19 391 21 462 17 2468

Table 3
Multi-host network measurements of five nwaku [11] nodes deployed at different locations for various
message sizes. The message travels from Singapore to Frankfurt via the other nodes in the order listed.
Latencies (one-way, or 𝑅𝑇𝑇/2) are in ms. 𝐿𝑔 , 𝐿𝑡, and 𝐿𝑣 are averages across five runs. 𝐿𝑎𝑣𝑔

𝑡𝑜𝑡𝑎𝑙 is an
average of the total latencies across five runs. Note: 𝐿𝑎𝑣𝑔

𝑡𝑜𝑡𝑎𝑙 (the average of sums of sub-latencies for
each run) is not equal to the sum of averages (i.e., the value in the last column is not necessarily equal
to the sum of other values in that row).

Message size (KB) Hashing time (ms)
2 0.005516

25 0.061144
100 0.243716
500 1.222206

Table 4
Benchmarks for Keccak256 hashing and conversion to a BN254 field element using go-zerokit-rln
library [25] (goos: darwin, goarch: arm64).

Now consider the distribution of latencies obtained in the single-host simulation compared
to the latencies measured in a multi-host deployment (Figure 3).

Simulated latency distributions for small messages tend to be discrete, reflecting separate
hops. As we increase the message size, the latency distribution starts resembling a normal
distribution. We explain this as follows: for larger messages, a larger share of the total latency is
spent on message transmission. For small messages, the transmission is nearly instant compared
to validation time at each node, which explains the peaks in the upper charts.

Simulation latencies largely fall between the minimal and maximal latencies as measured
in the multi-host deployment (dashed lines in Figure 3). Simulations seem to underestimate
the latency for 100 KB and 500 KB messages, most likely due to the fact that our simulation
framework does not accurately model CPU time (we do account for proof verification time as
benchmarked in Table 1, but do not account for other related tasks, such as message decoding).
In a similar vein, simulations overestimate latency for small messages, which is especially visible
in the plot for 2 KB messages. Messages of 25 KB or smaller are always delivered in under 1 s,
both in simulations and in the multi-host measurements. 95% of large messages (500 KB) are
delivered in under 1.7 seconds according to simulation results (Table 5).

For a four-hop multi-host path, proof generation represents between around 10% to 50% of
the total latency (for 500 KB and 2 KB messages, respectively). We consider this tolerable, as
the proof is generated once per message. Proof verification (which is only a part of message
validation) does not contribute significantly to the total latency.



Figure 3: Single-host simulation results of 1000 nwaku [11] nodes with 𝐷 = 6 in Shadow [19] simulator.
Message propagation latency distribution is shown for different message sizes. The average, 95%
percentile, min and max values are shown, values in ms. In red worst and best case propagation times
from multi-host simulation extracted from Table 3.

Msg size Min (m-h) Min (s-h) Avg (s-h) 95-perc. (s-h) Max (s-h) Max (m-h)
2 280 356 497 597 604 498
25 349 432 756 930 993 931
100 350 439 900 1076 1221 1781
500 539 471 1358 1665 2468 3141

Table 5
The minimum, average, 95-percentile, and maximum total latencies (ms) in the single-host distributions
(marked "s-h") and multi-host measurements (marked "m-h") for different message sizes (KB). We do
not provide the averages and the 95-percentile data for the multi-host measurements due to a small
number of data points.

6. Related Work

P2P protocols for message dissemination in blockchains have been studied extensively, including
works on latency measurements in Bitcoin [26, 27] and Ethereum [28]. GossipSub [3] has been
designed for information propagation in Ethereum and Filecoin. Waku [29], based on GossipSub,



uses RLN [2], a ZKP-based protocol, for rate limiting.
Decentralized messaging is a related but separate line of work with a long history [30].

Decentralized messaging protocols normally define the rules of communication between a client
and a server, and between two servers. Clients connect to the servers of their choosing, while
servers forward users’ messages to one another, forming a federation. Notable examples include:
ActivityPub [31] (which e.g. Mastodon is based on [32]), Matrix [33], Nostr [34], XMPP [35],
Diaspora [36], AT Protocol [37], and Farcaster [38].

Waku distinguishes itself from federated protocols: it aims to be generalized (not only useful
for chat-like applications) and provides transport privacy. Waku also embeds scalability and
security mechanisms into its transport and routing layer. Specifically, it leverages RLN to
prevent abuse of the open infrastructure and provides various scalability avenues, including
sharding and light protocols (see Section 1).

7. Future Work

Dynamic topologies. Our analysis assumes a stable full mesh topology (see Section 3).
However, real-world networks experience significant churn: nodes join and leave dynamically.
Churn may lead to temporary neighborhoods of denser or sparser connectivity. One future
avenue of research is investigating the impact of node churn and different topologies on
propagation latency.

Higher message rates. We have analyzed network performance at low message rates. In-
creasing message rates leads to more control messages, higher processing overhead, and other
transient effects impacting latency. Future work should explore these effects systematically.

Testing under more complex scenarios. Future research might evaluate the performance
of Waku with RLN under more challenging conditions, which may involve node faults, network
failures, clock de-synchronization, and other adversarial conditions.

On-chain RLN membership tree. We currently require all RLN publishers and verifiers to
construct and maintain a copy of the membership Merkle tree 𝑇 locally (see Section 2.5.1), which
may be impractical for resource-restricted nodes. We are investigating models where the entire
tree 𝑇 resides on-chain, allowing for delegated proof generation and simplified verification.

Security and privacy analysis. Further research should focus on identifying vulnerabili-
ties and attack vectors. Enhancing security mechanisms to prevent spam, Sybil attacks, and
adversarial behavior will contribute to the robustness of the network.

Comparison with traditional P2P protocols without RLN. Another research direc-
tion may consider comparable P2P protocols with other rate-limiting methods (for instance,
reputation-based) and compare their properties with those of Waku.



8. Conclusion

In this work, we studied message propagation latency in Waku — a GossipSub-based P2P mes-
saging protocol that uses RLN [2] for privacy-preserving rate limiting. We simulated a network
of 1000 nodes under realistic assumptions (Section 4.1), and used a geographically distributed
cloud deployment (Section 4.2). The results show that the delays that RLN imposes are not
overwhelming compared to the overall message latency. Proof generation, which the publisher
does only once per message, requires under 300 ms per proof and does not depend on message
size, assuming that the message has been hashed. Proof verification, performed by every routing
node, is roughly an order of magnitude faster than proof generation. Overall, RLN-related tasks
account for between around 10% to 50% of the total latency, depending on message size. This
percentage is higher for small messages, as proof generation is independent of message size, and
transmission time is lower for small messages. In absolute numbers, all messages of 25 KB and
smaller are delivered in under 1 second. We conclude that RLN can be a practical rate limiting
tool in real-world protocols underpinning user-facing applications.
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