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Abstract
We study the dynamics of the Terra-Luna collapse occurred in May 2022 by creating a simulation
environment that embodies both the free market buying-selling transactions and the Terra-Luna protocol
exchange features. The parameters used during the simulation generate the conditions necessary for
triggering the deviation from the peg of the stablecoin UST, along with the subsequent collapse of its
value to almost zero. Then we present three proposals to increase the stability of algorithmic stablecoins
and we employ the simulation environment to show how they could help stabilize the algorithmic
stablecoin’s peg.
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1. Introduction

The decentralized finance (DeFi) environment introduces a new paradigm in the finance sector.
It enables unbanked users with smartphones and Internet access to engage in financial activities
like money transfer, lending, borrowing, or speculating on synthetic stocks or commodities, on a
24/7/365 basis, without the need for a bank or other financial institution’s involvement [1]. DeFi
platforms utilize cryptocurrencies as the primary medium of exchange within their ecosystems.

The volatility of these digital assets has forced the introduction of collateralized stablecoins
(CS). These are cryptocurrencies backed by a fiat currency or a commodity – typically USD, but
also EUR, CHF, JPY, RMB, KRW, or gold. These digital assets maintain dynamically the peg with
the corresponding fiat currency through a seigniorage process, along with a certification that
for each collateralized token there exists a corresponding amount of value of the fiat currency,
deposited in a bank, that can be redeemed.

Nowadays, we count dozens of fiat-backed stablecoins traded on the main cryptocurrency
exchanges, such as USDT, USDC, TUSD, and BUSD. Their capitalization and success are in-
creasing over time. They are used as a safe haven of stability when traders want to exit the
volatility turmoil of the market and control the keys of the owned tokens, avoiding the use of a
centralized exchange, the only able to swap a cryptocurrency with a fiat currency.
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The spirit of the DeFi philosophy is that of creating a new paradigm for a decentralized
financial system, totally detached from (central) banks, financial institutions, and fiat currencies.
Unfortunately, collateralized stablecoins do not comply with this philosophy, since by using
them the DeFi sector remains bonded with the traditional financial market via the fiat currency
used as collateral. It is at this point that algorithmic stablecoins (AS) come into play. They
are coins or tokens whose price is anchored to fiat currency solely by using an algorithmic
protocol. More precisely, there are two different kinds of pure algorithmic stablecoin pegging
mechanisms: rebasing and seigniorage.

In the rebasing model, stablecoin’s total supply is not fixed and is modified adaptively on a
regular basis, directly on the wallets of all users. The general idea is that when the price of the
AS is above the parity with the adopted fiat currency – say the USD – it is necessary to increase
the supply, since the demand is high and the token is too scarce. On the contrary, when the
price is below the parity, it is necessary to decrease the supply, since the demand is low and
the token is too abundant. This implies that a user with, say, 1000 tokens today, could find a
greater amount in her/his wallet the day after, say 1100, if AS price > $1, without any action
by the user. On the contrary, if AS price < $1, then the wallet content could be smaller, say 900
tokens. The Ampleforth protocol (AMPL) [2] is an example of this model.

The seigniorage model typically has two tokens: the AS token and the governance token (GT).
The AS token is the algorithmic stablecoin, while the GT token is used to absorb the volatility
of the AS token. This means that when AS price < $1, we can profitably burn 1 AS for $1 worth
of GT inside the protocol, which we can sell at market, yielding the difference as a profit. This
reduces the total supply of AS and stabilizes the price. On the contrary, when AS price > $1,
burning $1 worth of GT can mint 1 AS, which we can sell at market, yielding the difference as a
profit. This increases the total supply of AS and stabilizes the price.

The Terra-Luna protocol [3], based on the AS TerraUSD (UST) and the GT LUNA, is of this
kind. It has been, at the same time, the most successful and the worst example of how to build a
decentralized AS. The most successful because it globally collected almost $60B of capitalization
and $20B of Total Value Locked1 (TVL) in no more than 15 months between January 2021 and
May 2022, in an unprecedented rash of money induced by the Anchor protocol platform, which
ensured 20% of Annual Percentage Yield (APY) for users who were lending UST. The worst
example because more than 90% of the entire market cap was lost in 7 days between May 9 and
May 15, 2022, as a consequence of a disastrous collapse induced by an irreversible depeg of UST,
which crashed its value to almost zero.

After recalling the basics of Terra-Luna (Section 2), we present the first contribution of this
paper, which is a simulation environment for Terra-Luna based on Matlab® (Section 3). This
environment mirrors the dynamics of the free market, allowing users to buy and sell UST and
LUNA. Moreover, by changing some parameters, we can induce the market conditions that led
to the collapse of the UST peg.

The second contribution of this work is to illustrate three proposals that aim to improve
the stability of the original protocol (Section 4). Firstly we propose a redesign of the original
algorithmic stabilization mechanism used in the Terra protocol, whose failure caused the collapse
of the system. The second proposal involves creating a USDT reserve pool that the protocol

1It is the amount of USD locked in smart contracts of the DeFi’s protocols.
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can utilize to automatically restore the AS price. Finally, we propose a solution that aims to
prevent hyperinflation of GT by introducing an automatic BTC pool. The paper concludes with
all simulation results (Section 5) and a final discussion (Section 6).

2. Background

2.1. The Terra Stabilization Mechanism

The Terra algorithmic market module (TMM) played a central role in maintaining the price
stability of UST. This is the module that provides incentives for arbitrageurs2 to mint or burn
UST in response to price deviations from the peg [4].

When UST’s market price falls below the peg, e.g., $0.98, arbitrageurs can profitably burn 1
UST obtaining automatically $1 worth of LUNA from the protocol, making a $0.02 profit per
UST burnt. Conversely, if UST’s price exceeds the peg, e.g., $1.02, they can burn $1 worth of
LUNA and mint 1 UST, again yielding a $0.02 profit. This mechanism operates via the protocol’s
algorithmic market-maker, the virtual liquidity pool (VLP), with LUNA’s price sourced from
validator oracles, see Figure 1.

Figure 1: Strategy used by arbitrageurs in the Terra stabilization protocol

The VLP is implemented through a variant of the classical constant-product market-making
algorithm [5]. In this case the constant-product formula 𝐶𝑃 is defined as:

𝐶𝑃 = 𝑃𝑜𝑜𝑙2𝐵𝑎𝑠𝑒 ·
1

𝑃𝑟𝑖𝑐𝑒𝐿𝑈𝑁𝐴
(1)

where 𝑃𝑜𝑜𝑙𝐵𝑎𝑠𝑒 is the initial quantity of UST in the pool, while the fraction 1/𝑃𝑟𝑖𝑐𝑒𝐿𝑈𝑁𝐴

expresses the price of LUNA in USD as observed in external markets [4]. 𝑃𝑟𝑖𝑐𝑒𝐿𝑈𝑁𝐴 is
repeatedly updated by oracles, implying that the pool actively adapts to market fluctuations.

2An arbitrageur is an individual or entity that engages in the practice of exploiting price discrepancies in different
markets to make profits.
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The TMM integrates the 𝑇𝑒𝑟𝑟𝑎𝑃𝑜𝑜𝑙𝛿 stabilization mechanism, with the parameter 𝛿 indicat-
ing the deviation of the UST amount into the VLP compared to its base size 𝑃𝑜𝑜𝑙𝐵𝑎𝑠𝑒:

𝑃𝑜𝑜𝑙𝑈𝑆𝑇 = 𝑃𝑜𝑜𝑙𝐵𝑎𝑠𝑒 + 𝛿, 𝑃𝑜𝑜𝑙𝐿𝑈𝑁𝐴 =
𝐶𝑃

𝑃𝑜𝑜𝑙𝑈𝑆𝑇
(2)

The dynamics of 𝛿 play a crucial role in adjusting the liquidity pool sizes in response to market
activities. As swaps happen and the balance between UST and LUNA quantities shifts, 𝛿 changes
to ensure that 𝐶𝑃 stays constant. A key aspect of the market module’s functionality is its ability
to replenish the VLP, progressively bringing 𝛿 back towards zero. The rate of this replenishment
is determined by the 𝑃𝑜𝑜𝑙𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑃𝑒𝑟𝑖𝑜𝑑 parameter. At the end of each block – with one
block being produced approximately every 6 seconds – 𝛿 is updated using the following formula:

𝛿 := 𝛿 ·
(︂
1− 1

𝑃𝑜𝑜𝑙𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑃𝑒𝑟𝑖𝑜𝑑

)︂
(3)

This formula governs the adjustment of 𝛿, with 𝑃𝑜𝑜𝑙𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑃𝑒𝑟𝑖𝑜𝑑 influencing the pace
of the adjustment. This parameter was determined by the Terra community, and at the time
of the de-pegging event, its value was 36, meaning that a partial replenishment of the VLP
occurs every 36 · 6 = 216 seconds if no transactions take place during this period [4]. Note, as
a consequence, that a full replenishment can be obtained only when the number of blocks tends
to infinity.

2.2. The Terra-Luna Collapse

The collapse of the Terra protocol was triggered by a complex series of events [6]:

1. On May 5, 2022, there was evident selling pressure on UST and LUNA, indicated by
negative hourly log returns. This selling pressure persisted, indicating a loss of confidence
in both cryptocurrencies.

2. On May 7, 2022, the stablecoin UST lost its peg with USD due to a liquidity pool attack on
Curve-3pool3. This event triggered intervention from the Luna Foundation Guard (LFG),
which defended the UST peg and recovered the price temporarily.

3. Despite this intervention, on May 9, 2022, UST lost its peg for the second and final time,
leading to a significant decrease in both LUNA and UST prices. This event marked a
critical blow to the stability of the Terra-Luna ecosystem.

4. Finally, on May 11, 2022, an announcement by Do Kwon (co-founder and CEO of Terraform
Labs), presumably indicating the last attempt to defend the peg by endorsing community
proposal 1164, was interpreted by the market as a signal of the impending demise of the
Terra-Luna ecosystem. This interpretation caused a final crash in the market, indicating
the collapse of the Terra protocol.

3Curve-3pool is a DeFi liquidity pool protocol designed to facilitate efficient stablecoin trading. It is a component of
the Curve Finance platform, which specializes in providing low-slippage swaps between similar assets, particularly
stablecoins. Curve-3pool specifically focuses on stablecoins like USDT, USDC, and DAI, among others.
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These events highlight a cascade of failures within the Terra-Luna protocol, including an
irreversible depeg of the UST stablecoin, the lost of about $54B of capitalization, and the collapse
of the other two DeFi platforms involved in the Terra-Luna ecosystem. They are the lending
platform Anchor and the exchange Mirror protocol, which allowed users to create and trade
mirrored assets (mAssets) that mirror the price of stocks and/or commodities of the real world.

2.3. Literature Review

Stablecoins have gained interest from researchers across disciplines and from financial institu-
tions. The literature delves into their design, mechanisms, and impacts on financial stability,
monetary policy, and regulation.

The ECB Crypto-Assets Task Force has tackled the issue of stablecoins in their report n. 247 [7].
Calcaterra et al. [8] study the first-order design principles for stablecoins by illustrating the core
design features and their interoperative feedback, while the recent BIS Paper n. 141 [9] provides
an overview of the evolution of the stablecoin market over the past decade and examines whether
stablecoins have stayed true to their name in terms of being “stable”. Ante et al. [10] review 22
peer-reviewed articles, offering insights into stablecoin types, benefits, risks, and regulatory
challenges. They identify research gaps, notably the lack of robust data and frameworks for
analyzing the stablecoin ecosystem’s complexities. Furthermore, recent research by Choi and
Kim [11] examines the challenges and opportunities associated with stablecoins and central
bank digital currency (CBDC). They explore the financial stability implications of stablecoins
and the potential for CBDCs to revolutionize payment infrastructures and monetary policies.

As for the algorithmic stablecoins, Clements [12] examine their fragility, highlighting risks
like self-fulfilling runs and coordination failures. Recent failures, like the Terra-Luna collapse,
bolster Clements’ argument, prompting questions about designing stablecoins resilient to high
volatility.

The Terra-Luna ecosystem has been the subject of several studies that explore its unique
features and challenges, as well as the failure that occurred in May 2022.

Cho [13] explains the collapse of the Terra project by analyzing the impact of the Anchor
protocol on the system’s stability. Anchor was a great catalyzer for the demand and supply of
UST, but – at the same time – was one of the responsible for the collapse of the system. Cho
shows that, during the de-pegging event, the UST supply increased rapidly from 2.3B to 3.4B,
contrary to the expected contraction mechanism that should have reduced the UST supply when
the UST price was below the peg. The article attributes this anomaly to the run on the Anchor
protocol, which allowed users to borrow UST at a low interest rate and sell it on the market,
creating a downward pressure on the UST price and an upward pressure on the UST supply.
The article of Cho showed that the UST price on exchanges followed the redeemed value of UST
that users could obtain by swapping UST for LUNA and selling it on the market. Cho finds that
the redeemed value of UST was consistently lower than the UST price on exchanges, indicating
that users were under-compensated when they redeemed UST for LUNA. Cho also finds that
the UST price on exchanges followed the redeemed value of UST closely, suggesting that users
were arbitraging the price difference by selling UST on the market and buying UST on the Terra
blockchain. This mechanism played a significant role in the de-pegging event, as it created a
disincentive for users to hold UST and a downward pressure on the UST price.
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Briola et al. [6] quantitatively describe the main events that led to the Terra project’s failure
by reviewing, in a systematic way, news from heterogeneous social media sources and by
discussing the fragility of the Terra project and its vicious dependence on the Anchor protocol.
They also identify the crash’s trigger events, analyzing hourly and transaction data for BTC,
LUNA, and UST.

Liu et al. [14] use data from the Terra blockchain and trading data from exchanges to study
the dynamics and interactions of the system. They showed that it was a complex phenomenon
that happened across multiple chains and assets and that the run on Terra was not due to market
manipulation but rather to growing concerns about the sustainability of the system.

Kurovskiy and Rostova [15] investigate the collapse of the Terra-Luna ecosystem by using
transaction-level data from the Terra blockchain and cryptocurrency exchanges, illustrating the
several flaws in the design of UST that impeded its price stabilization.

Uhlig [16] develops a novel theory to account for the Terra crash and uses it to shed light
on the data. He introduces a new methodology to show how crashes unfold gradually, by
introducing the method of quantitative interpretation.

Ferretti and Furini [17] investigate the collapse of UST through Twitter as a passive sensor,
analyzing sentiment in tweets to explore correlations with market value, highlighting the
challenge of foreseeing sudden catastrophic events solely through sentiment analysis.

3. The Simulation Environment

We present two distinct and independent simulations of the Terra stability mechanism. The
first one investigates the role of the mechanism in the collapse of Terra-Luna and is rooted in
Cho’s study [13], which highlights the system’s limited redemption capacity. The second model
delves into the repercussions of a sudden and substantial increase in LUNA supply during a
collapse, resulting in its complete devaluation over a short period.

The same simulation environment will be used in Section 4 to propose three enhancements
to the Terra protocol. The first one consists of a redesign of the stability mechanism, while the
other two have to do with limiting the LUNA supply growth.

3.1. Price Dynamics through an AMM

To achieve our goals effectively, we need an environment that can accurately reflect the price
changes in the free markets of the exchanges, for both the stablecoin and the governance coin,
and the dynamics of the Terra stabilizing protocol. This can be done by simulating an Automated
Market Maker (AMM), which operates within discrete time intervals called iterations or samples.
AMMs serve as foundational components in decentralized exchanges (DEX) [18], allowing
the two tokens associated with the AMM itself to be swapped; this approach revolutionizes
assets trading through automated decentralized processes. Unlike traditional order-book-based
exchanges, AMMs rely on liquidity pools (LP), constituted by the reserve of the two tokens, that
algorithmically pair and maintain the two assets. The LP operates through a constant-product
formula mechanism [5], which ensures that the token balance within its pools remains stable:
𝑘 = 𝑥 · 𝑦, where 𝑥 and 𝑦 are the token reserve balances of the two tokens, while 𝑘 is a constant
called the invariant of the pool.

6
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In our simulations, two AMMs (or markets) are implemented: one that governs the buying
and selling of the stablecoin, and the other that governs the buying and selling of the governance
token. During each time interval, a swap occurs within each AMM, influencing simulated token
prices. The impact of these swaps on prices depends on the volume of tokens involved: larger
volumes have a greater effect on simulated prices, so inducing a slippage on it.

Let us explore in detail how AMMs are implemented within the simulations. Each AMM is
described by a LP Π𝑇𝑎,𝑇𝑏

composed of two tokens 𝑇𝑎 and 𝑇𝑏. At the discrete time instant 𝑛, the
state of a LP is defined by:

• 𝑄𝑎(𝑛) and 𝑄𝑏(𝑛), which represent the supplies of 𝑇𝑎 and 𝑇𝑏, respectively, at iteration 𝑛.
• 𝑘 = 𝑄𝑎(𝑛)·𝑄𝑏(𝑛), which is the invariant at time 𝑛.

In our simulations, we assume zero transaction fees and constant pool liquidity for simplicity,
as these factors are deemed unimportant for our analysis goals. The liquidity pool state at a
given time 𝑛 can be written as:

Π𝑇𝑎,𝑇𝑏,𝑘(𝑄𝑎(𝑛), 𝑄𝑏(𝑛))

We can define a swap as a function that operates on a liquidity pool state. The swap function
takes a token 𝑇𝑖 and a swapped quantity 𝑞𝑖 as input and produces a token 𝑇𝑜 and the related
quantity 𝑞𝑜 as output. The token 𝑇𝑖 can either be 𝑇𝑎 or 𝑇𝑏, and the token 𝑇𝑜 is consequently 𝑇𝑏

or 𝑇𝑎. If the swap is performed at time 𝑛+ 1, the difference in supply at the output is equal to:

𝑄𝑜(𝑛)−𝑄𝑜(𝑛+ 1) =
𝑘

𝑄𝑖(𝑛)
− 𝑘

𝑄𝑖(𝑛) + 𝑞𝑖
(4)

where 𝑄𝑖(𝑛) and 𝑄𝑜(𝑛) are the pool quantities of tokens 𝑇𝑖 and 𝑇𝑜 respectively.
In an AMM, the token price is measured in terms of the other token in the liquidity pool.

Therefore, it is crucial to establish a fixed reference for token pricing. Here, the reference is USD,
serving as a stable benchmark for analyzing price fluctuations of the algorithmic stablecoin. As
fiat currency cannot be used in DeFi, we need to make an assumption. Let’s designate the other
token as 𝑇𝑈 , a fully collateralized stablecoin pegged to USD; for example, USDT or USDC. This
allows token values to be expressed in USD, assuming 𝑇𝑈 remains at a constant external value
of $1.

The concept of algorithmic stablecoin involves a stabilization mechanism that is usually
based on two tokens: the stablecoin 𝑇𝑠 (e.g. UST) and the governance token 𝑇𝑣 , which is volatile
(e.g. LUNA). Both simulations instantiate the AMM model above by employing two liquidity
pools to emulate the price of 𝑇𝑠 and 𝑇𝑣 . The first pool, denoted by Π𝑆 , is designed to simulate
the market operations on 𝑇𝑠 and consists of 𝑇𝑠 and 𝑇𝑈 . The second pool, denoted by Π𝑉 ,
replicates the market dynamics of 𝑇𝑣 and consists of 𝑇𝑣 and 𝑇𝑈 . At each time instant 𝑛, a
swap occurs within Π𝑆 and Π𝑉 altering the price of 𝑇𝑠 and 𝑇𝑣 , the state of the liquidity pool is
given by Π𝑇𝑎,𝑇𝑈 ,𝑘(𝑄𝑎(𝑛), 𝑄𝑈 (𝑛)) where 𝑎 = 𝑠 or 𝑎 = 𝑣, and the price 𝑃𝑎(𝑛) of the token 𝑇𝑎

is determined by the ratio of the quantities of the two tokens inside the pool at that specific
moment:

𝑃𝑎(𝑛) =
𝑄𝑈 (𝑛)

𝑄𝑎(𝑛)
(5)
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This is what Uniswap, the most used DEX with the highest TVL, refers to as the “mid price” [19];
it can be viewed as the price at which one could theoretically trade an infinitesimally small
amount of one token for the other in the pool, without slippage of the price.

3.2. Wallet Distribution

The simulation environment imposes the crucial choice of setting the effective quantities of
each token we have to swap to simulate an ordinary session of the free market or to use in
the simulated Terra-Luna redemption protocol. One possible approach could be that of using
information about the amount of tokens inside the wallet of each user. Since we have no data
about the original distribution of UST and LUNA, we estimated such data from the distribution
of BTC and ETH [20] among addresses within their respective blockchains, under the hypothesis
that all the cryptocurrencies show a similar wallet balance distribution. We found that BTC and
ETH balances can be approximated with an exponential distribution with parameter 𝜆, whose
probability density function is defined as follows:

𝑓(𝐵, 𝜆) =

{︃
𝜆𝑒−𝜆𝐵 if 𝐵 > 0

0 if 𝐵 ≤ 0

where 𝐵 represents a given wallet balance and parameter 𝜆 was obtained using MATLAB’s
fitdist() function, which returns the value of 𝜆 that best fits the provided input data – in our
case, the balances of BTC wallets. The analysis reveals that the majority of the wealth is held
by a few “whales”: for example, at the time of writing over 90% of all Bitcoin are held in wallets
with a balance of more than 1 BTC, and only 4 addresses hold more than 100 000 BTC [21].

3.3. Stochastic Swaps

The probability of buying or selling a token within a liquidity pool is set by using the stochastic
process of a random walk, which fully reflects the intrinsic uncertainty of the market. A
random walk represents the cumulative effect of a sequence of random steps or movements,
taken at discrete time intervals, starting from an initial position. Mathematically, a simple
one-dimensional random walk can be defined as follows. Let {𝑋𝑖} be a sequence of independent
and identically distributed random variables, with a probability distribution function 𝒫(𝑋𝑖) =
𝒫(𝑋0), representing the successive steps taken at discrete time points 𝑡 = 0, 1, 2, ... on the left
or the right. The position of the walker at time 𝑡 is given by the sum of all the random steps up
to that point:

𝑆𝑡 = 𝑋0 +𝑋1 +𝑋2 + . . .+𝑋𝑡

In the stochastic swap model presented in this study, a random walk is employed to determine
the probability of a token 𝑇 to be swapped within the pool at a given iteration. Let’s consider
the example of liquidity pool Π𝑇𝑎,𝑇𝑏,𝑘 . At iteration 𝑛, 𝑇 = 𝑇𝑎 with probability 𝑝(𝑛), and 𝑇 = 𝑇𝑏

with probability 1− 𝑝(𝑛). So, there are three possible scenarios:

𝑝(𝑛) = 1
2 =⇒ equilibrium condition

𝑝(𝑛) < 1
2 =⇒ 𝑇𝑎 experiences buying pressure

𝑝(𝑛) > 1
2 =⇒ 𝑇𝑎 experiences selling pressure

(6)
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At the beginning of each iteration, 𝑝(𝑛) is varied from its current value by an amount ∆:

𝑝(𝑛+ 1) = 𝑝(𝑛) + ∆ (7)

where ∆ is a random variable with a normal distribution Φ(𝜇Δ, 𝜎
2
Δ) such that its mean value 𝜇Δ

is equal to zero, while its variance 𝜎2
Δ is a simulation parameter initialized during the simulation

setup that expresses the market volatility. At the beginning of the simulations, we suppose
that the market is in a state of equilibrium, hence 𝑝(0) = 1

2 . The value of 𝑝(𝑛) is subsequently
updated based on equation (7), allowing for both positive or negative steps, that increases or
reduces the probability of sale.

3.4. Inducing the Collapse

We have now the problem of representing the conditions of a panic sell (FUD – Fear, Uncertainty,
Doubt) or of an irrational buy (FOMO – Fear of Missing Out) that can afflict the free market.
During the FUD phase, users who are in a state of panic tend to sell their cryptocurrencies with
great intensity, triggering what is known as a “bank run”. Widespread panic can be triggered
by any external event. In the case of the Terra-Luna ecosystem, it was the withdrawal of large
amounts of UST from the Anchor protocol and the partial loss of the peg.

We can model this by introducing the concept of panic zone for the stablecoin. When the
market enters the panic zone, a mechanism is triggered to represent the irrational behavior of
users, whose decisions are driven more by emotions than rationality. Otherwise, we are in the
healthy zone, where the users act as usual, in a normal condition of the market. It is understood
that the stablecoin tends to maintain the peg inside the healthy zone, while tends to lose it
outside, when entering the panic zone.

Concerning the pool Π𝑆 , we have implemented two different definitions of panic zones, used
in the simulations to represent the behavior of the buying/selling probability, when hovering
over the boundaries separating the healthy zone from the panic zone of the market. The two
approaches respectively use the price of the stablecoin and its probability of sale to trigger the
risk of a collapse when entering the panic zone.

3.4.1. The Variable Mean Approach Based on Price

Suppose that at iteration 𝑛 = 0 the price is set to 𝑃𝑠(0) = 1. As the simulation progresses,
various buy and sell transactions of 𝑇𝑠 will occur, leading to fluctuations in its probability and
price on the basis of equations (6) and (7). At iteration 𝑛, 𝑇𝑠 is in the healthy zone if:

|1− 𝑃𝑠(𝑛)| < 𝜌 with 𝜌 < 1 (8)

In our simulation we have set 𝜌 = 0.05; this implies that the healthy zone of 𝑇𝑠 covers the
interval $0.95< 𝑃𝑠(𝑛)< $1.05. When the price of the algorithmic stablecoin exits this healthy
zone, a price collapse mechanism for 𝑇𝑠 is triggered. In this scenario, the goal is to create selling
or buying pressure that acts proportionally to the deviation of the price from $1. To implement
this selling or buying pressure, we adjust the mean value 𝜇Δ, initially set to 0, on the basis of
the following formula:

𝜇Δ = (1− 𝑃𝑠(𝑛)) · 𝜎Δ (9)
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So, when |1− 𝑃𝑠(𝑛)| ≥ 𝜌 we are in the panic zone, and the following market conditions hold:

1−𝑃𝑠(𝑛) > 0 =⇒ 𝜇Δ>0 =⇒ selling pressure

1−𝑃𝑠(𝑛) < 0 =⇒ 𝜇Δ<0 =⇒ buying pressure

Note that the slippage of the mean is proportional to the slippage of the price.

3.4.2. The Variable Probability Approach

In the second approach the sell probability 𝑝(𝑛) freely fluctuates as described in equations (6)
and (7), when we are in a healthy zone. The only difference is that now the healthy zone itself
is defined in terms of probabilities, more precisely as the interval 0.3≤ 𝑝(𝑛)≤ 0.7. Outside
this interval, we are in the panic zone, and the user behavior is modeled through a completely
different function representing her/his irrational mindset, which is an exponential-type function.

Define now the “ℬ zone”, or buy zone, as the market condition in which 𝑝(𝑛)<0.3: in this
scenario, the demand for buying cryptocurrency is particularly high for various reasons. On the
contrary, the “𝒮 zone”, or sell zone, represents the most critical phase of the market, in which
𝑝(𝑛)>0.7 and the stablecoin risks the collapse. The functions ℬ(𝑑) and 𝒮(𝑑) compute the sell
probability within the panic zone:

ℬ(𝑑) = 1

1+e
𝑑+𝑎ℬ

𝜂

𝒮(𝑑) = 1

1+e
−

𝑑+𝑎𝒮
𝜂

(10)

Here 𝑑 is the distance from the healthy zone, 𝜂 is a parameter determining the slope of the
function, and 𝑎ℬ and 𝑎𝒮 need to be computed based on the parameters lowerBound=0.3 and
upperBound=0.7 fixing the limits of the healthy zone, so as to align the values of 𝑑 inside and
outside the interval. More precisely we have:

𝑎ℬ =𝑑 if 1

1+e
𝑑
𝜂
=lowerBound 𝑎𝒮 =𝑑 if 1

1+e
− 𝑑

𝜂
=upperBound

In our case 𝑎ℬ =𝑎𝒮 because 0.5− lowerBound = upperBound− 0.5.
Inside the Terra-Luna protocol, the simulation keeps track of the number of tokens in cir-

culation for both cryptocurrencies and models the principle of scarcity in the following way.
When a new quantity of a token is minted, a positive step is taken during the random walk of
the market in which it is traded, increasing its probability of sale. Conversely, when a certain
quantity of a token is burnt, a negative step is taken during the random walk of the market
in which it is traded, increasing its probability of purchase. The length of the step taken is
proportional to the quantity minted or burnt.

The Terra-Luna protocol is not used during each time unit, but its probability of use 𝑃𝑇𝑒𝑟𝑟𝑎(𝜉)
increases with the deviation 𝜉 from the peg value. This is because a larger variation in the price
of UST offers greater profit opportunities for arbitrageurs, who tend to use the protocol more
frequently. The function 𝑃𝑇𝑒𝑟𝑟𝑎(𝜉) is defined as follows:

𝑃𝑇𝑒𝑟𝑟𝑎(𝜉) = e
− 1

(𝜉+𝑎)𝑡 · 0.5 + 0.5 (11)

10



Federico Calandra et al. CEUR Workshop Proceedings 1–19

with 𝑎 and 𝑡 suitable constants. In our case 𝑎 = 0.55, 𝑡 = 5, and 𝜉 = |1 − UST.price| · 10.
Equation (11) assumes different interpretations depending on whether the price of UST is above
or below the parity. In the former case, the function returns the probability of minting UST; in
the latter case, the function gives the probability of burning UST.

The scheme shown in Figure 1, describing the arbitrageurs’ opportunity when using the
Terra-Luna protocol, is not used in practice when the market approaches zone 𝒮 . Normally,
when the price of UST is less than 1, this would imply the purchase of discounted UST to make
profit. However, if the price undergoes a significant drop triggering a bank run, this is no more
true. In a panic phase users simply want to get rid of all the UST already in their possession,
without buying new ones to make profit, also because in these cases the value of LUNA received
in change is plummeting.

4. Three Terra-Luna Stabilization Proposals

We now propose three mechanisms to improve the stability of the Terra-Luna protocol. They
aim to enhance the system’s redemption capacity during periods of crisis and high volatility.

4.1. Modifying the TerraPool𝛿 Mechanism

At the core of Terra’s stabilization mechanism is the concept of virtual liquidity pool (VLP) [4],
that in our case corresponds to Π𝑣𝑖𝑟𝑡𝑢𝑎𝑙

𝑇𝑠,𝑇𝑣
, i.e., the pool containing both the stable (UST) and the

volatile (LUNA) tokens, respectively. Initially, it comprises an equal quantity of 𝑃𝑜𝑜𝑙𝐵𝑎𝑠𝑒 units
for 𝑇𝑠 and 𝑇𝑣 . In equation (3) we introduced the parameter 𝛿, which is equal to the difference
between the current quantity of 𝑇𝑠 and the baseline quantity 𝑃𝑜𝑜𝑙𝐵𝑎𝑠𝑒 in the 𝑇𝑒𝑟𝑟𝑎𝑃𝑜𝑜𝑙𝛿
stabilization mechanism. Under these hypotheses, at each iteration 𝑛 we have:

𝐾(𝑛) = 𝑃𝑜𝑜𝑙2𝐵𝑎𝑠𝑒 ·
1

𝑃𝑣(𝑛)
𝑄𝑠(𝑛) = 𝑃𝑜𝑜𝑙𝐵𝑎𝑠𝑒 + 𝛿(𝑛) 𝑄𝑣(𝑛) =

𝐾(𝑛)

𝑄𝑠(𝑛)
(12)

Each swap executed within the pool dynamically alters the value of 𝛿(𝑛).
In the original implementation of the pool replenishing mechanism of equation (3), 𝛿(𝑛) goes

down to zero only when 𝑛 → ∞. So, we suggest a different method that acts similarly, but can
bring 𝛿(𝑛) to zero after exactly 𝑃𝑜𝑜𝑙𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑃𝑒𝑟𝑖𝑜𝑑 (𝑃𝑅𝑃 ) blocks. The idea is very simple.
Let’s consider the scenario where the initial swap within the pool at time 𝑛 = 0 involves an
amount of 𝑥 stable tokens 𝑇𝑠. Then the replenishment of 𝑥 tokens in the VLP is spread among
a list of 𝑥/𝑃𝑅𝑃 chunks, which will supply 𝛿 in the subsequent 𝑃𝑅𝑃 time instants of the
simulation. More formally, let 𝐴 be a vector of length 𝑃𝑅𝑃 initially empty; at the time instant
𝑛 = 0 it is filled with the 𝑃𝑅𝑃 chunks:

𝐴 =
[︁(︁ 𝑥

𝑃𝑅𝑃

)︁
,
(︁ 𝑥

𝑃𝑅𝑃

)︁
, ...,

(︁ 𝑥

𝑃𝑅𝑃

)︁]︁
|𝐴| = 𝑃𝑅𝑃

as a consequence of the swap. The first element 𝐴1 of 𝐴 will determine the value of 𝛿(1) as
follows:

𝛿(1) = 𝛿(0)−𝐴1

11
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Simultaneously, during this iteration, a swap operation takes place within the virtual pool
denoted as 𝑆𝑤𝑎𝑝(𝑇𝑖, 𝑞), where 𝑇𝑖 ∈ {𝑇𝑠, 𝑇𝑣}. Consider 𝑄 = [𝑞/𝑃𝑅𝑃, 𝑞/𝑃𝑅𝑃, ..., 𝑞/𝑃𝑅𝑃 ],
where |𝑄| = 𝑃𝑅𝑃 . Consequently, the update of vector 𝐴 takes place according to the following
procedure: {︃

𝐴(𝑛) = 𝐴(𝑛− 1) +𝑄 if 𝑇𝑖 = 𝑇𝑠

𝐴(𝑛) = 𝐴(𝑛− 1)−𝑄 if 𝑇𝑖 = 𝑇𝑣

(13)

After this, 𝛿(𝑛) is updated as follows, where now 𝐴1 is the first element of 𝐴(𝑛):

𝛿(𝑛) = 𝛿(𝑛− 1)−𝐴1

Finally, the elements of the vector 𝐴 are shifted left and the last element is set to zero:

𝐴(𝑛) = [𝐴1, 𝐴2, ..., 𝐴𝑃𝑅𝑃 ]
𝑠ℎ𝑖𝑓𝑡−−−→ 𝐴(𝑛+ 1) = [𝐴2, 𝐴3, ..., 𝐴𝑃𝑅𝑃 , 0]

This process guarantees that, if no swaps occur, the virtual pool is fully replenished after exactly
𝑃𝑅𝑃 blocks. Based on this setup, the improvement of the stability we are going to propose
pertains to a variant of the VLP replenishing mechanism suggested above. If the variation of
𝛿 exceeds 𝜆 · 𝐵𝑎𝑠𝑒𝑃𝑜𝑜𝑙 (where 𝜆 = 0.05 in our simulation), the array 𝐴(𝑛) is treated as if it
had a length of 𝑃𝑅𝑃/2. Essentially, in a crisis scenario, the virtual pool’s redemption capacity
doubles. Given that the variation of 𝛿 correlates directly with the price 𝑃𝑠(𝑛) of 𝑇𝑠 (as shown in
[13]), this modification enables the system to recover more rapidly from a peg loss and ensures
that 𝛿 returns to zero in half the original time.

4.2. Implementing a UST Reserve Pool

This improvement involves the implementation of a reserve pool that the protocol can use to
automatically buy back 𝑇𝑠, i.e., UST, if its price falls below the peg. The reserve pool functions
as a collateral for the token 𝑇𝑠. The purpose is to utilize this pool during a crisis to quickly
restore 𝑃𝑠(𝑛) to the peg. The reserve pool is filled with 𝑅(𝑛) USDT and, in our simulation,
we have set 𝑅(𝑛) = 0.2 · (total supply 𝑇𝑠). If 𝑃𝑠(𝑛) falls significantly below the peg, the
protocol uses some of the reserves to buy 𝑇𝑠 from Π𝑆 . This mechanism ensures that 𝑇𝑠 can
efficiently recover the peg value even in adverse market conditions, at least as far as the pool
has tokens to use. At iteration 𝑛, the quantity 𝑥 of USDT to sell is determined by the following
system of equations, derived from formulas (4) and (5), where ̃︀𝑄𝑠(𝑛) is the quantity of 𝑇𝑠 when
𝑃𝑠(𝑛) = 0.95: ⎧⎨⎩𝑥 = 𝑘̃︀𝑄𝑠(𝑛)

−𝑄𝑈 (𝑛)

0.95 = 𝑘̃︀𝑄𝑠(𝑛)2+ ̃︀𝑄𝑠(𝑛)

=⇒

⎧⎨⎩𝑥 = 𝑘̃︀𝑄𝑠(𝑛)
−𝑄𝑈 (𝑛)

̃︀𝑄𝑠(𝑛) =

√︁
0.95+4𝑘

0.95
−1

2

4.3. Implementing a BTC Reserve Pool against LUNA Hyperinflation

This approach is an automatization of the attempt made by the Luna Foundation Guard to
support the value of UST, when during the agitated phases of the collapse they sold at the
market about 80 000 BTC [22]. The proposed solution aims to prevent the hyperinflation of
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the volatile token 𝑇𝑣 , which results from its excessive minting due to the usage pressure of the
Terra-Luna protocol of Figure 1. It is well known that the number of LUNA in circulation soars
from 340 million to 6.5 trillion at the end of the collapse event [23].

When the value of the stablecoin 𝑇𝑠 reaches a critical level – e.g., $0.95 – a queue system is
automatically activated, which involves a reserve of BTC. At this point, a user has three options
available:

1. sell her/his own 𝑇𝑠 directly on the market;
2. use the classic stabilization protocol, burning 1 𝑇𝑠 to obtain $1 worth of 𝑇𝑣 ;
3. burn 1 𝑇𝑠 to obtain $1 worth of BTC.

It is necessary to clarify some aspects. For the correct functioning of the system, the presence
of a reliable oracle, which provides the real-time price of BTC, is essential. Moreover, the users
will not receive real BTC, as the latter is a native cryptocurrency of another blockchain. Instead,
they will receive $1 worth of wrapped BTC (wrBTC), which is a synthetic token that represents
the ownership of a BTC on a blockchain different from the original one. Obviously, it is not
possible to prevent users from selling their own 𝑇𝑠 on the market. However, it is possible to
induce them to undertake option 2 or option 3 through the creation of a double-queue system:
queue 𝐴 collects transactions of users eager to exchange 𝑇𝑠 tokens for BTC, while queue 𝐵
contains transactions of those who prefer to normally use the protocol, obtaining $1 worth of
𝑇𝑣 for each 𝑇𝑠 inserted.

Both options offer the benefit of reducing the circulating supply of 𝑇𝑠, but queue 𝐴 has the
additional advantage of avoiding the minting of 𝑇𝑣 . A probability function can govern the
mechanism by selecting, at each time interval, which queue to activate. Both queues follow the
FIFO (First In First Out) principle. The probability function can be a simple logistic function,
which essentially depends on two parameters:

• the deviation of the price 𝑃𝑠(𝑛) from the parity;
• the filling percentage of the BTC reserve.

In our simulation, the function 𝑃𝐴(𝑥) returns the probability that queue 𝐴 is activated, and is
defined as follows:

𝑃𝐴(𝑥) =
1

1 + 𝑒−𝜅(𝑥−𝛼)
(14)

where 𝜅 determines the slope of the curve and 𝛼 establishes the point on the 𝑥-axis where the
graph has an inflection point. These parameters can be manipulated to obtain a function that
conforms to one’s preference. The independent variable 𝑥 could be set as a combination of the
filling percentage of the BTC reserve and the deviation from parity, for example the product of
the two. To reproduce the market context before the collapse of the Terra-Luna system, the
100% of the reserve could be considered equal to $1B in BTC. When the reserve is empty, the
probability of queue 𝐴 being selected is set to zero.

5. Simulation Results

We carried out two kinds of simulations. The first one evaluates the performance of the original
stabilization mechanism of the Terra protocol under normal market conditions, characterized by
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Collapses 𝜎Δ 𝜎Δ 𝜎Δ

𝑃𝑅𝑃 𝑃𝑜𝑜𝑙𝐵𝑎𝑠𝑒 10−4 5 · 10−4 10−3

24 105 0 2 7
24 5 · 105 0 0 0
24 106 0 0 0

36 105 0 1 4
36 5 · 105 0 0 0
36 106 0 0 0

48 105 0 3 4
48 5 · 105 0 0 2
48 106 0 0 0

Table 1: Collapses of 𝑇𝑠 in 10 simulations Figure 2: 𝑇𝑠 price collapse across iterations

constant volatility 𝜎Δ. In the second one, we simulated a crisis scenario, marked by escalating
volatility, to induce a collapse and to test the efficacy of the three proposed improvements
discussed in the preceding sections.

Firstly, we conducted a series of 10 simulations, each with different constant values of
parameters 𝜎Δ, 𝑃𝑜𝑜𝑙𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑃𝑒𝑟𝑖𝑜𝑑, and 𝑃𝑜𝑜𝑙𝐵𝑎𝑠𝑒, resulting in a comprehensive total of
270 simulation runs. The parameter 𝜎Δ plays a pivotal role in determining market volatility,
while 𝑃𝑜𝑜𝑙𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑃𝑒𝑟𝑖𝑜𝑑 and 𝑃𝑜𝑜𝑙𝐵𝑎𝑠𝑒 determine the redemption capacity of the stability
mechanism. In each simulation, 𝑇𝑠 starts at $1, with a total supply of 107, while Π𝑆 and Π𝑉

initially consist of 2 · 106 units of 𝑇𝑠 and 𝑇𝑣 , respectively. The price of the volatile token is
initially set to 𝑃𝑣(0) = $100. Results are shown in Table 1. We considered 𝑇𝑠 collapsed when
its price falls below $0.50 and the system is not able to recover. Figure 2 shows the behavior of
the price of 𝑇𝑠 during a collapse.

In the second series of tests, we conducted 30 simulations with the goal of inducing the
system to collapse by gradually increasing the volatility 𝜎Δ from 𝜎Δ = 0.0001, with a 0.00002
step every 1000 iterations, with a total of 100 000 iterations. Figure 3 illustrates the behavior
of 𝑃𝑠 under these conditions. The results are shown in Table 2, and make it evident that the
original implementation of Terra is unable to withstand such scenarios, with the peg being lost
in 28 out of 30 simulations.

Better results are obtained with the modification of the TerraPool𝛿 replenishing mechanism
and the UST Reserve Pool. As for the BTC Reserve Pool improvement, we performed two
separate sets of tests. The first one involved the use of the Terra standard stabilization protocol,
without any queue system. The second one incorporated the queue system described in Section
4.3. In both scenarios, we conducted 100 runs of the simulation program, monitoring and
recording the circulating supply of 𝑇𝑣 (LUNA). The results are shown in Figure 4.
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Figure 3: Price variation of 𝑇𝑠 under gradually increasing volatility using the original Terra
protocol: Simulation 1 depicts a collapse, indicated by the peak of𝑃𝑠, while Simulations
2 and 3 illustrate the protocol’s resilience to volatility crises

Simulation Original TerraPool𝛿 replenishing UST Reserve Pool
Total collapses 28 24 7

Mean collapse time 71012 70278 86559

Table 2: Number of collapses, with increasing value of the volatility 𝜎Δ, for the original protocol
and for the first two improvement proposals

6. Discussion and Conclusions

The first conclusion we can draw is the structural weakness of the Terra-Luna protocol, since
Table 2 shows an astonishingly high number of collapses as a consequence of an increasing
volatility 𝜎Δ of the market (28 out of 30). Also, the huge number of circulating supply of LUNA,
of the order of 1012 and described in Figure 4a, is a clear warning of this structural weakness.
Even if a perfect algorithmic stablecoin should resist all kinds of market destabilization forces,
with only "0" in the second and third columns of Table 1, the improvements we obtain with the
three proposals shed light on the mechanism one could implement to increase the strength of
an algorithmic stablecoin protocol.

The TerraPool𝛿 method indicates that it is possible to work on the replenishment protocol
with a mild rate of success (24 collapses out of 30 instead of 28). Significantly better results are
obtained with the use of a UST Reserve Pool (7 collapses out of 30). Also, the method of limiting
the LUNA supply with the queue system implementing the BTC Reserve Pool shows a good
performance, reducing to 109 the original supply of LUNA of order 1012. Note that this huge
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(a) Circulating supply of LUNA in the original pro-
tocol

(b) Circulating supply of LUNA with the queue
system implementing the BTC Reserve Pool

Figure 4: Supply of LUNA without and with the queue system described in Section 4.3

supply was the main cause of the crash in the LUNA value and of the Terra-Luna collapse. Note,
moreover, that this last method guarantees an almost constant value of supply for all simulations.
These evaluations underscore the critical importance of incorporating reserve pools and refining
virtual pool replenishing mechanisms to improve the stability of algorithmic stablecoin systems
in the face of market volatility. The utilization of a reserve pool provides a significant cushion
against adverse market movements, acting as a stabilizing force during periods of heightened
volatility, and the obtained data serve as a clear illustration of the robustness exhibited by this
hybrid collateralized-algorithmic stablecoin. It effectively demonstrates the coin’s ability to
resist challenges posed by a highly volatile market. In general, our solutions extend beyond
Terra-Luna, adapting to diverse seigniorage stablecoin frameworks.

As far as the limitations of our approach are concerned, while the introduction of a reserve
pool shows promising results, it moves away from the notion of a pure algorithmic stablecoin,
transitioning towards a partially collateralized stablecoin model. Future research should address
these trade-offs and explore avenues for optimizing stability while maintaining algorithmic
integrity. Another limitation is related to the design choices we made. They are an inevitable
approximation of the human behavior in financial markets. Anyway, we tried to be as general
as possible in designing these phenomena, since our simulations are initializable with different
parameters, allowing for flexibility in capturing various market conditions and behaviors. A
critical aspect for future exploration lies in refining the parameters and assumptions underlying
our simulation model. This could be achieved by incorporating real-world data and historical
market trends.

Moving forward, our research suggests several interesting directions. Further investigation
into alternative replenishment protocols and reserve pool mechanisms could yield insights
into improving the stability of this type of system. Our simulation-based approach could help
researchers to effectively design and evaluate new algorithmic stablecoin protocols, offering
valuable information about their performance and robustness in various market conditions.
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